tìm min P=\(\frac{x+12}{\sqrt{x}+2}\)
1.Cho x>0. Tìm Min của N=\(\frac{x^3+2000}{x}\)
2. Cho x>0, y>0, x+y\(\ge\)0. Tìm Min của P=\(5x+3y+\frac{12}{x}+\frac{16}{y}\)
3. Cho x, y, z\(\ge\)0, thỏa mãn x+y+z\(\ge\)12. Tìm Min của A=\(\frac{x}{\sqrt{y}}+\frac{y}{\sqrt{z}}+\frac{z}{\sqrt{x}}\)
1.\(N=x^2+\frac{1000}{x}+\frac{1000}{x}\ge3\sqrt[3]{\frac{x^2.1000.1000}{x^2}}\)
\(\Rightarrow N\ge300\)
Dấu "=" xảy ra \(\Leftrightarrow x^3=1000\Leftrightarrow x=10\)
2.\(P=\left(5x+\frac{12}{x}\right)+\left(3y+\frac{16}{y}\right)\ge2\sqrt{60}+2\sqrt{48}=4\sqrt{15}+8\sqrt{3}\)
Dấu "=" xảy ra \(\Leftrightarrow5x=\frac{12}{x};3y=\frac{16}{y}\Leftrightarrow x=\sqrt{\frac{12}{5}};y=\frac{4\sqrt{3}}{3}\)
\(\)
Tìm Min của A=\(\frac{x+12}{\sqrt{x}+2}\)
Mình cần gấp lắm
A(\(\sqrt{x}\)+2)=x+12
đặt \(\sqrt{x}\)=a
khi đó A(a+2)=a2+12
\(\Leftrightarrow\)a2-aA-2A+12=0
\(\Delta\)=A2+8A-48\(\ge\)0 (vì luôn tồn tại a)
A\(\ge\)4
vậy min A là 4
Cho biểu thức: \(P=\frac{\sqrt{x+4\sqrt{x-4}}+\sqrt{x-4\sqrt{x-4}}}{\sqrt{\frac{16}{x^2}-\frac{8}{x}+1}}\)
a) Rút gọn gọn P
b) Tìm x để P đạt Min, tìm min đó
c) Tìm x nguyên để y nguyên
\(đkxđ\Leftrightarrow x\ge4\)
\(P=\frac{\sqrt{x+4\sqrt{x-4}}+\sqrt{x-4\sqrt{x-4}}}{\sqrt{\frac{16}{x^2}-\frac{8}{x}+1}}\)
\(=\frac{\sqrt{x-4+4\sqrt{x-4}+4}+\sqrt{x-4-4\sqrt{x-4}+4}}{\sqrt{\frac{4^2}{x^2}-2.\frac{4}{x}+1}}\)
\(=\frac{\sqrt{\left(x-4+2\right)^2}+\sqrt{\left(x-4-2\right)^2}}{\sqrt{\left(\frac{4}{x}-1\right)^2}}\)
\(=\frac{|x-2|+|x-6|}{|\frac{4}{x}-1|}=\frac{x-2+|x-6|}{|\frac{4}{x}-1|}\)
Dùng bảng xét dấu nha
1. Cho A=\(\frac{3}{2+\sqrt{2x-x^2}+3}\)
a. Tìm x để A có nghĩa
b. Tìm Min(A), Max(A)
2/ Tìm Min, Max của: \(A=\frac{1}{2+\sqrt{x-x^2}}\)
3/ Tìm Min(B) biết: \(B=\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}\)
4/ Tìm Min, Max của:\(C=\frac{4x+3}{x^2+1}\)
5/ Tìm Max của: \(A=\sqrt{x-1}+\sqrt{y-2}\)biết \(x+y=4\)
6/ Tìm Max(B) biết: \(B=\frac{y\sqrt{x-1}+x\sqrt{y-2}}{xy}\)
7/ Tìm Max(C) biết: \(C=x+\sqrt{2-x}\)
tích mình với
ai tích mình
mình tích lại
thanks
Cho x,y,z la các số dương sao cho x+y+z\(\ge\)12
tìm Min M=\(\frac{x}{\sqrt{y}}+\frac{y}{\sqrt{z}}+\frac{z}{\sqrt{x}}\)
\(P=4\left(\frac{x}{y+4}+\frac{y}{z+4}+\frac{z}{x+4}\right)=4\left(\frac{x^2}{xy+4x}+\frac{y^2}{yz+4y}+\frac{z^2}{zx+4z}\right)\)
\(\ge\frac{4\left(a+b+c\right)^2}{xy+4x+yz+4y+zx+4z}=\frac{4.12^2}{4.12+\left(xy+yz+zx\right)}\)
\(\ge\frac{4.12^2}{4.12+\frac{\left(x+y+z\right)^2}{3}}=\frac{4.12^2}{4.12+\frac{12^2}{3}}=6\)
Ta có
\(\frac{x}{\sqrt{y}}+\frac{x}{\sqrt{y}}+\frac{xy}{8}\ge3\sqrt[3]{\frac{x}{\sqrt{y}}.\frac{x}{\sqrt{y}}.\frac{xy}{8}}=\frac{3x}{2}\)
Tương tự cho 2 cái kia
Cộng lại theo vế:
\(2M\ge\frac{3}{2}\left(x+y+z\right)-\frac{xy+yz+zx}{8}\ge\frac{3}{2}\left(x+y+z\right)-\frac{\left(x+y+z\right)^2}{24}\ge12\)
Vậy \(M\ge6\)
Giải lại
Ta có
\(M^2=\frac{x^2}{y}+\frac{y^2}{z}+\frac{z^2}{x}+2\left(\frac{xy}{\sqrt{yz}}+\frac{yz}{\sqrt{zx}}+\frac{zx}{\sqrt{xy}}\right)\)
Lại có
\(\hept{\begin{cases}\frac{xy}{\sqrt{yz}}+\sqrt{yz}\ge2\sqrt{xy}\\\frac{yz}{\sqrt{zx}}+\sqrt{zx}\ge2\sqrt{yz}\\\frac{zx}{\sqrt{xy}}+\sqrt{xy}\ge2\sqrt{zx}\end{cases}}\)
Cộng theo vế suy ra \(\frac{xy}{\sqrt{yz}}+\frac{yz}{\sqrt{zx}}+\frac{zx}{\sqrt{xy}}\ge\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\)
Do đó
\(M^2=\frac{x^2}{y}+\frac{y^2}{z}+\frac{z^2}{x}+2\left(\frac{xy}{\sqrt{yz}}+\frac{yz}{\sqrt{zx}}+\frac{zx}{\sqrt{xy}}\right)\)
\(\ge\frac{x^2}{y}+\frac{y^2}{z}+\frac{z^2}{x}+2\left(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)\)
\(=\left(\frac{x^2}{y}+\sqrt{xy}+\sqrt{xy}\right)+\left(\frac{y^2}{z}+\sqrt{yz}+\sqrt{yz}\right)+\left(\frac{z^2}{x}+\sqrt{zx}+\sqrt{zx}\right)\)
\(\ge3\sqrt[3]{\frac{x^2}{y}.\sqrt{xy}.\sqrt{xy}}+3\sqrt[3]{\frac{y^2}{z}.\sqrt{yz}.\sqrt{yz}}+3\sqrt[3]{\frac{z^2}{x}.\sqrt{zx}.\sqrt{zx}}\)
\(=3\left(x+y+z\right)\ge36\)
Vậy \(M\ge6\)
ĐT xảy ra tại \(x=y=z=4\)
\(A=\left(\frac{24-\sqrt{x}}{x-\sqrt{x}-2}-\frac{x+2\sqrt{x}}{4-x}\right):\left(\frac{x+2\sqrt[2]{x}+4}{x\sqrt{x}-8}\right)\)tìm Min A
P=\(\frac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\frac{2x+\sqrt{x}}{\sqrt{x}}+\frac{2x-2}{\sqrt{x}-1}\)
a) Rút gọn
b) Tìm min P
c) Tìm x để Q=\(\frac{2\sqrt{x}}{P}\in Z\)
cho 2 số thực dương x, y thỏa \(x+y+2\sqrt{\left(x+2\right)\left(y+2\right)}=12\) tìm min M= \(\frac{x^3}{y+2}+\frac{y^3}{x+2}+\frac{48}{x+y}\)
\(---------\)
Ta có:
\(x+y+4=\left(x+2\right)+\left(y+2\right)\ge2\sqrt{\left(x+2\right)\left(y+2\right)}\) (theo bđt \(AM-GM\) cho bộ số gồm hai số thực không âm)
nên \(x+y+\left(x+y+4\right)\ge x+y+2\sqrt{\left(x+2\right)\left(y+2\right)}\)
hay nói cách khác, \(2\left(x+y+2\right)\ge12\) (do \(x+y+2\sqrt{\left(x+2\right)\left(y+2\right)}=12\) )
\(\Rightarrow\) \(x+y\ge4\)
Do đó, sau khi thiết lập điều kiện cho \(x,y\) , ta tiếp tục áp dụng \(AM-GM\) cho 3 số thực dương đã cho trước, điển hình như:
\(\frac{x^3}{y+2}+\frac{y+2}{2}+2\ge3\sqrt[3]{\frac{x^3}{\left(y+2\right)}.\frac{\left(y+2\right)}{2}.2}=3x\)
\(\Rightarrow\) \(\frac{x^3}{y+2}\ge3x-\frac{y+2}{2}-2\) \(\left(1\right)\)
Đổi biến, thực hiện công đoạn trên tương tự đối với phân thức sau, rút gọn và biến đổi lặp lại:
\(\frac{y^3}{x+2}\ge3y-\frac{x+2}{2}-2\) \(\left(2\right)\)
Gộp \(\left(1\right)\) và \(\left(2\right)\) với nhau cùng với dấu liên kết \(\left(+\right)\) , khi đó:
\(\frac{x^3}{y+2}+\frac{y^3}{x+2}\ge\frac{5}{2}\left(x+y\right)-6\)
Lúc đó,
\(M\ge\frac{5}{2}\left(x+y\right)+\frac{48}{x+y}-6\)
\(---------\)
Đặt \(t=x+y\) \(\Rightarrow\) \(t\ge4\)
\(\Rightarrow\) \(\frac{t}{2}\ge2\) \(\Rightarrow\) \(\frac{t}{2}-2\ge0\) \(\left(3\right)\)
Ta biễu diễn bđt trên lại như sau:
\(M\ge\frac{5t}{2}+\frac{48}{t}-6\)
tức là \(M\ge\frac{5t}{2}+\frac{t}{2}+\frac{48}{t}-6-2\) (do \(\left(3\right)\) )
hay \(M\ge\frac{5t}{2}+\frac{t}{2}+\frac{48}{t}-6-2=3t+\frac{48}{t}-8\)
Mặt khác, ta lại có: \(3t+\frac{48}{t}\ge2\sqrt{3t.\frac{48}{t}}=24\)
nên \(M\ge24-8=16\)
Vậy, \(M_{min}=16\)
Dấu \("="\) xảy ra khi và chỉ khi \(x=y=2\)
\(\Rightarrow\frac{x^3}{y+2}+\frac{y^3}{x+2}+2.\left(\sqrt{x+2}+\sqrt{y+2}\right)\ge3\left(x+y\right)\)
\(\Rightarrow M+8\ge3\left(x+y\right)+\frac{48}{x+y}\ge2.\sqrt{3.\left(x+y\right).\frac{48}{x+y}}=24\)( do (1) và áp dụng bdt cosi cho 2 số dg) . Dấu "=" xảy ra <=> x=y=2 . OK.
M = \(\frac{x^2+\sqrt{x}}{x-\sqrt{x}+1}+\frac{x^2-\sqrt{x}}{x+\sqrt{x}+1}+\frac{2x-2\sqrt{x}}{\sqrt{x}-1}\)
A, RG
B, TÌM x để M =0,M=4
C, tìm min M
với đk 0 ≤ x # 1, biểu thức đã cho xác định
P = (x+2)/(x√x-1) + (√x+1)/(x+√x+1) - (√x+1)/(x-1)
P = (x+2)/ (√x-1)(x+√x+1) + (√x+1)/ (x+√x+1) - 1/(√x-1) {hđt: x-1 = (√x-1)(√x+1)}
P = [(x+2) + (√x+1)(√x-1) - (x+√x+1)] / (x√x-1)
P = (x-√x)/(x√x-1) = (√x-1)√x /(√x-1)(x+√x+1)
P = √x / (x+√x+1)
- - -
ta xem ở trên là biểu thức rút gọn của P, để chứng minh P < 1/3 ta biến đổi tiếp:
P = 1/ (√x + 1 + 1/√x)
bđt côsi: √x + 1/√x ≥ 2 ; dấu "=" khi x = 1 nhưng do đk xác định nên ko có dấu "="
vậy √x + 1/√x > 2 <=> √x + 1 + 1/√x > 3 <=> P = 1/(√x + 1 + 1/√x) < 1/3 (đpcm)