1 tìm các số hữu tỉ x,y thỏa mãn 3x=2y và x+y=-15
2 tìm các số hữu tỉ x,y biết rằng
a) x+y-z=20 và \(\dfrac{x}{4}=\dfrac{y}{3}=\dfrac{z}{5}\)
b)\(\dfrac{x}{11}=\dfrac{y}{12};\dfrac{y}{3}=\dfrac{z}{7}\) và 2x-y+z=152
3) chia số 552 thành ba phần tỉ lệ nghịch 3;4;5 tính giá trị từng phần?
chia số 315 thành 3 phần tỉ lệ nghịch với 3:4:6. tính giá trị mỗi phần?
4 cho tỉ lệ thức \(\dfrac{a}{b}=\dfrac{c}{d}\) chứng minh rằng
a)\(\dfrac{a+b}{a-b}=\dfrac{c+d}{c-d}\)
b)\(\dfrac{5a+2c}{5a+2d}=\dfrac{a-4c}{b-4d}\)
c\(\dfrac{ab}{cd}=\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}\)
Các bạn giúp mình với nhé mình dang cần gấp.mình xin cảm ơn
Bài 1:
Ta có: \(3x=2y\)
nên \(\dfrac{x}{2}=\dfrac{y}{3}\)
mà x+y=-15
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{x+y}{2+3}=\dfrac{-15}{5}=-3\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{x}{2}=-3\\\dfrac{y}{3}=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-6\\y=-9\end{matrix}\right.\)
Vậy: (x,y)=(-6;-9)
Bài 2:
a) Ta có: \(\dfrac{x}{4}=\dfrac{y}{3}=\dfrac{z}{5}\)
mà x+y-z=20
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{4}=\dfrac{y}{3}=\dfrac{z}{5}=\dfrac{x+y-z}{4+3-5}=\dfrac{20}{2}=10\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{x}{4}=10\\\dfrac{y}{3}=10\\\dfrac{z}{5}=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=40\\y=30\\z=50\end{matrix}\right.\)
Vậy: (x,y,z)=(40;30;50)
Bài 2:
b) Ta có: \(\dfrac{y}{3}=\dfrac{z}{7}\)
nên \(\dfrac{y}{12}=\dfrac{z}{28}\)
mà \(\dfrac{x}{11}=\dfrac{y}{12}\)
nên \(\dfrac{x}{11}=\dfrac{y}{12}=\dfrac{z}{28}\)
hay \(\dfrac{2x}{22}=\dfrac{y}{12}=\dfrac{z}{28}\)
mà 2x-y+z=152
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{2x}{22}=\dfrac{y}{12}=\dfrac{z}{28}=\dfrac{2x-y+z}{22-12+28}=\dfrac{152}{38}=4\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{x}{11}=4\\\dfrac{y}{12}=4\\\dfrac{z}{28}=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=44\\y=48\\z=112\end{matrix}\right.\)
Vậy: (x,y,z)=(44;48;112)
Giúp mình với !!!!!!!
Tìm 2 số hữu tỉ x,y biết :
x - 2y = 2(x +y ) và x - y =\(\dfrac{x}{y}\) (y ≠ 0 )
\(x-2y=2x+2y\\ \Rightarrow x=-4y\left(1\right)\\ \Rightarrow\dfrac{x}{y}=-4\\ \Rightarrow x-y=-4\Rightarrow x=-4+y\left(2\right)\\ \left(1\right)\left(2\right)\Rightarrow-4+y=-4y\\ \Rightarrow-5y=-4\Rightarrow y=\dfrac{4}{5}\\ \Rightarrow x=-4\cdot\dfrac{4}{5}=-\dfrac{16}{5}\)
tìm các số hữu tỉ x, y, z biết
a) 2x = 3y = 7z và x + y - z = 58
b) 2x = 3y = 5z và x + y - z = -190
c) 3x 2y, 7y = 5z và x - y + z = 32
a) Vì \(2x=3y\Rightarrow\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x}{21}=\frac{y}{14}\)
\(3y=7z\Rightarrow\frac{y}{7}=\frac{z}{3}\Rightarrow\frac{y}{14}=\frac{z}{6}\)
\(\Rightarrow\frac{x}{21}=\frac{y}{14}=\frac{z}{6}\) và x+y-z=58
APa dụng TC dãy TSBN ta có
\(\frac{x}{21}=\frac{y}{14}=\frac{z}{6}=\frac{x+y-z}{21+14-6}=\frac{58}{29}=2\)
\(\Rightarrow x=42;y=28;z=12\)
Các câu còn lại tương tự
tìm 2 số hửu tỉ x,y biết: x-y=2(x+y) và x-2y=3x/y(y khác 0)
Answer:
Có:
\(x-y=2\left(x+y\right)\)
\(\Rightarrow x-y=2x+2y\)
\(\Rightarrow x=-3y\)
Ta thay \(x=-3\) vào \(-2y=3\frac{x}{y}\)
\(-3y-2y=3.\frac{-3y}{y}\)
\(\Rightarrow-5y=9\)
\(\Rightarrow y=\frac{9}{5}\)
\(\Rightarrow x=-3.\frac{9}{5}=\frac{-27}{5}\)
Bài 1: Tìm tỉ số: x / y biết 2x-y / y = 2 / 7
Bài 2: Tìm tỉ số x+y / y+z biết 3x = 2y và 3y = 2z
7.( 2x - y ) =2y
<=> 14x -7y = 2y
<=> 14x = 9y
<=> x/y = 9/14
Tìm các số hữu tỉ x,y biết: x-y= 3x+1 và x+ y = 3y
Ta có : x - y + x + y = 3x + 1 + 3y
x + x - y + y = 3x + 3y + 1
2x - 3x - 3y = 1
x - 3y = 1 = 1 . 1 = ( - 1).( - 1)
\(\Rightarrow\)+ x = 1
y = 1
+ x = - 1
y = - 1
Vậy x = 1; y = 1
hoặc x = - 1; y = - 1
Tìm các số hữu tỉ x,y,z:
5x=2y;2x=3z và xy=90
x/2=y/3;y/4=z/5 và x^2-y^2=-20
Có :
\(5x=2y\Rightarrow\frac{x}{2}=\frac{y}{5}\Rightarrow\frac{x}{6}=\frac{y}{15}\)
\(2x=3z\Rightarrow\frac{x}{3}=\frac{z}{2}\Rightarrow\frac{x}{6}=\frac{z}{4}\)
\(\Rightarrow\frac{x}{6}=\frac{y}{15}=\frac{z}{4}\)
\(\Rightarrow x,y,z\)cùng dấu
Lại có : \(\Rightarrow\frac{x^2}{36}=\frac{y^2}{225}=\frac{z^2}{16}=\left(\frac{x}{6}\right)\left(\frac{y}{15}\right)=\frac{xy}{6.15}=\frac{90}{90}=1\)
\(\frac{x^2}{36}=1\Rightarrow x^2=36\Rightarrow\orbr{\begin{cases}x=6\\x=-6\end{cases}}\)
\(\frac{y^2}{225}=1\Rightarrow y^2=225\Rightarrow\orbr{\begin{cases}y=15\\y=-15\end{cases}}\)
\(\frac{z^2}{16}=1\Rightarrow z^2=16\Rightarrow\orbr{\begin{cases}z=4\\z=-4\end{cases}}\)
Mà \(x,y,z\)cùng dấu
\(\Rightarrow\orbr{\begin{cases}x=6;y=15;z=4\\x=-6;y=-15;z=-4\end{cases}}\)
Vậy ...
Giải:
Ta có: 5x = 2y => x/2 = y/5 => x/6 = y/15
2x = 3z => x/3 = z/2 => x/6 = z/4
=> x/6 = y/15 = z/4
Đặt x/6 = y/15 = z/4 = k
=> x = 6k, y = 15k, z = 4k
Mà xy = 90
=> 6.k.15.k = 90
=> 90.k2 = 90
=> k2 = 1
=> k = 1 hoặc k = -1
+) k = 1 => x = 6, y = 15, z = 4
+) k = -1 => x = -6, y = -15, z = -4
Vậy x = 6, y = 15, z = 4 hoặc x = -6, y = -15, z = -4
câu trả lời rất dễ : do la mot so tu 0 den 100000000000000000000000000000000000000000000
Tìm các số hữu tỉ x, y, z biết
a) 3x = 2y, 7y=5z và x-y+z=32
b)\(\frac{x-1}{2}\)= \(\frac{y-2}{3}\)= \(\frac{z-3}{4}\)và x-2y+3z=-10
c) x(x+y+z)=-12 ; y(y+z+x)=18 ; z(z+x+y)=30
Tìm hai số hữu tỉ x,y biết: x - 2y = 2( x + y) và \(x-y=\frac{x}{y}\left(y\ne0\right)\)
Bài này trong đề thi hk1 của tỉnh mình, sáng mới thi, làm được nhưng lên hỏi cho chắc
Mình giải như vầy:
\(x-2y=2\left(x+y\right)\Rightarrow x-2y=2x+2y\)
\(\Rightarrow x-2x=2y+2y\Rightarrow-x=4y\)
\(\Rightarrow\frac{x}{-4}=\frac{y}{1}=\frac{x-y}{-4-1}=\frac{\frac{x}{y}}{-5}=\frac{x}{-5y}\)
Lúc đó \(\frac{x}{-4}=\frac{x}{-5y}\)
Suy ra x = 0 hoặc \(-4=-5y\)
TH1: x = 0\(\Rightarrow x-y=\frac{x}{y}\Leftrightarrow0-y=0\Rightarrow y=0\)(loại vì y khác 0)
TH2: \(-4=-5y\Rightarrow y=\frac{4}{5}\)
Sau đó tính x = \(\frac{-16}{5}\)
\(x-2y=2\left(x+y\right)\)\(\Leftrightarrow x=-4y\) (chuyển vế thôi!)
Mà \(x-y=\frac{x}{y}\Rightarrow\left(-4y\right)-y=-\frac{4y}{y}\)
\(\Rightarrow-5y=-4\Rightarrow y=\frac{4}{5}\Rightarrow x=-4y=-\frac{16}{5}\)
Vậy ...