4x (3x-8)+y (8-3x) Phân tích đa thức thành nhân tử
Phân tích đa thức thành nhân tử bằng phương pháp đặt ẩn phụ
(x2+4x+8)2+3x(x2+4x+8)+2x2
\(\left(x^2+4x+8\right)^2+3x\left(x^2+4x+8\right)+2x^2=\left(x^2+4x+8+\dfrac{3}{2}x\right)^2-\dfrac{1}{4}x^2=\left(x^2+\dfrac{11}{2}x+8\right)^2-\left(\dfrac{1}{2}x\right)^2=\left(x^2+\dfrac{11}{2}x+8-\dfrac{1}{2}x\right)\left(x^2+\dfrac{11}{2}x+8+\dfrac{1}{2}x\right)=\left(x^2+5x+8\right)\left(x^2+6x+8\right)=\left(x+2\right)\left(x+4\right)\left(x^2+5x+8\right)\)
\(\left(x^2+4x+8\right)^2+3x\left(x^2+4x+8\right)+2x^2\)
\(=\left(x^2+4x+8\right)^2+x\left(x^2+4x+8\right)+2x\left(x^2+4x+8\right)+2x^2\)
\(=\left(x^2+4x+8\right)\left(x^2+5x+8\right)+2x\left(x^2+5x+8\right)\)
\(=\left(x^2+5x+8\right)\left(x+2\right)\left(x+4\right)\)
Phân tích đa thức thành nhân tử:
(x2 + 4x + 8)2 + 3x(x2 + 4x +8) + 2x2
Đặt x2 + 4x + 8 = A. Ta sẽ được:
A2 + 3xA + 2x2
= A2 - xA - 2xA + 2x2
= A(A-x) - 2x(A-x)
= (A-x)(A-2x)
= (x2+3x+8)(x2+2x+8)
phân tích đa thức thành nhân tử bằng phương pháp hệ số bất định
4x^2 - 3y^2 - 4xy - 4x + 16y - 8
3x^2 + y^2 - 2xy +8x - 4y -3
Phân tích đa thức thành nhân tử:
6) (x^2 + 1) - 4x^2
7) x^2 - 4x - 5
8) x^5 - 3x^4 + 3x^3 - x^2
6, (x^2 +1) -4x^2 = x^2 + 1 - 4x^2 = 1 - (4x^2 - x^2) = 1 - 3x^2 = (1-\(\sqrt{3}\)x)(1+\(\sqrt{3}\)x)
7, x^2 - 4x -5 = x^2 - 2.x.2 + 4 - 9 = (x^2 - 2.x.2 +4) - 3^2 = (x-2)^2 - 3^2 = (x-2-3)(x-2+3) = (x-5)(x+1)
8, x^5 - 3x^4 + 3x^3 - x^2 = x^2(x^3 -3x^2 + 3x -1) = x^2(x-1)^3
\(x^5-3x^4+3x^3-x^2\)
\(=x^2\left(x^3-3x^2+3x-1\right)\)
\(=x^2\left(x-1\right)^3\)
hk tốt
^^
Phân tích đa thức thành nhân tử:
\(\left(x^2+4x+8\right)^2+3x\left(x^2+4x+8\right)+2x^2\)
đặt y=x2+4x+8 ta được
y2+3xy+2x2=y2+xy+2xy+2x2=y(y+x)+2x(y+x)
=(y+x)(y+2x)
thay y=x2+4x+8 ta được
(x2+5x+8)(x2+7x+8)
=(x^2+4x+8)2+2x(x^2+4x+8)+(x^2+4x+8)+2x^2
=(x^2+5x+8)(x^2+6x+8)
(x^2+4x+8)^2+3x(x^2+4x+8)+2x^2
dat x^2+4x+8=y
ta co:y^2+3xy+2x^2
=y^2+xy+2xy+2x^2
=y(y+x)+2x(y+x)
=(y+2x)(y+x)
=(x^2+4x+8+2x)(x^2+4x+8+x)
=(x^2+6x+8)(x^2+5x+8)
KL:......................
phân tích đa thức thành nhân tử :
3x2 - 3x - 8
phân tích đa thức thành nhân tử bằng phương pháp hệ số bất định:
a)(x^2+4x+8)^2+3x^2+14x^2+24x
b)x^2+3x+2
Phân tích đa thức thành nhân tử :
a.xy-3x+y^2-3y
b.x^2-16y^2+4x+4
\(a,=x\left(y-3\right)+y\left(y-3\right)=\left(x+y\right)\left(y-3\right)\\ b,=\left(x+2\right)^2-16y^2=\left(x+4y+2\right)\left(x-4y+2\right)\)
\(a,xy-3x+y^2-3y=\left(xy-3x\right)+\left(y^2-3y\right)=x\left(y-3\right)+y\left(y-3\right)=\left(x+y\right)\left(y-3\right)\\ b,x^2-16y^2+4x+4=\left(x^2+4x+4\right)-16y^2=\left(x+2\right)^2-\left(4y\right)^2=\left(x-4y+2\right)\left(x+4y+2\right)\)
Phân tích đa thức thành nhân tử
a) -25x6 -y8 +10x3 y4
b) x3 -3x2 -4x+12