A= x/x-2+2-x/x+2+12-10x/x^2-4
a) ĐKXĐ
b) Rút gọn
c) Tìm x để A=2/3
d) Tìm x nguyên để A nguyên
cho bt A = \(\dfrac{x^2+x}{x^2-2x+1}:\left(\dfrac{x+1}{x}-\dfrac{1}{1-x}+\dfrac{2-x^2}{x^2-x}\right)\)
a) tìm đkxđ và rút gọn A
b) tìm x để A = \(\dfrac{-1}{2}\)
c) tìm x để A<1
d) tìm x nguyên để A nguyên
Mik đang cần gấp, mik cảm ơn!!!
\(A=\dfrac{x^2+x}{x^2-2x+1}:\left(\dfrac{x+1}{x}-\dfrac{1}{1-x}+\dfrac{2-x^2}{x^2-x}\right)\left(1\right)\)
a) A xác định \(\Leftrightarrow\left\{{}\begin{matrix}x\ne0\\x\ne1\end{matrix}\right.\)
\(\left(1\right)\Rightarrow A=\dfrac{x\left(x+1\right)}{\left(x-1\right)^2}:\left(\dfrac{x+1}{x}+\dfrac{1}{x-1}+\dfrac{2-x^2}{x\left(x-1\right)}\right)\)
\(\Rightarrow A=\dfrac{x\left(x+1\right)}{\left(x-1\right)^2}:\left(\dfrac{\left(x+1\right)\left(x-1\right)+x+2-x^2}{x\left(x-1\right)}\right)\)
\(\Rightarrow A=\dfrac{x\left(x+1\right)}{\left(x-1\right)^2}:\left(\dfrac{x^2-1+x+2-x^2}{x\left(x-1\right)}\right)\)
\(\Rightarrow A=\dfrac{x\left(x+1\right)}{\left(x-1\right)^2}:\left(\dfrac{x+1}{x\left(x-1\right)}\right)\)
\(\Rightarrow A=\dfrac{x\left(x+1\right)}{\left(x-1\right)^2}.\dfrac{x\left(x-1\right)}{x+1}=\dfrac{x^2}{x+1}\)
b) Để \(A=-\dfrac{1}{2}\)
\(\Leftrightarrow\dfrac{x^2}{x+1}=-\dfrac{1}{2}\left(x\ne-1\right)\)
\(\Leftrightarrow2x^2=-\left(x+1\right)\)
\(\Leftrightarrow2x^2+x+1=0\)
\(\Delta=1-8=-7< 0\)
Nên phương trình trên vô nghiệm \(\left(x\in\varnothing\right)\)
c) Để \(A< 1\)
\(\Leftrightarrow\dfrac{x^2}{x+1}< 1\)
\(\Leftrightarrow x^2< x+1\left(x\ne-1\right)\)
\(\Leftrightarrow x^2-x-1< 0\)
\(\Leftrightarrow x^2-x+\dfrac{1}{4}-\dfrac{1}{4}-1< 0\)
\(\Leftrightarrow\left(x-\dfrac{1}{2}\right)^2-\dfrac{5}{4}< 0\)
\(\Leftrightarrow\left(x-\dfrac{1}{2}\right)^2< \dfrac{5}{4}\)
\(\Leftrightarrow-\dfrac{\sqrt[]{5}}{2}< x-\dfrac{1}{2}< \dfrac{\sqrt[]{5}}{2}\)
\(\Leftrightarrow\dfrac{-\sqrt[]{5}+1}{2}< x< \dfrac{\sqrt[]{5}+1}{2}\)
d) Để A nguyên
\(\Leftrightarrow\dfrac{x^2}{x+1}\in Z\)
\(\Leftrightarrow x^2⋮x+1\)
\(\Leftrightarrow x^2-x\left(x+1\right)⋮x+1\)
\(\Leftrightarrow x^2-x^2+x⋮x+1\)
\(\Leftrightarrow x⋮x+1\)
\(\Leftrightarrow x-x-1⋮x+1\)
\(\Leftrightarrow-1⋮x+1\)
\(\Leftrightarrow x+1\in\left\{-1;1\right\}\)
\(\Leftrightarrow x\in\left\{-2;0\right\}\left(x\in Z\right)\)
Cho biểu thức:
P = [x/(x^2-25) - (x-5)/(x^2+5x)] : (10x-25)/(x^2+5x) + x/(5-x)
a) Tìm ĐKXĐ của biểu thức P
b) Rút gọn P
c) Tìm x để P = 2013
d) Tìm giá trị nguyên của x để P nhận giá trị nguyên
\(ChoA=\left(\frac{x^3+1}{x^2-1}-\frac{x^2-1}{x-1}\right):\left(x+\frac{x}{x-1}\right)\)
a)tìm ĐKXĐ
b)Rút gọn A
c) tìm x để A=3
d)tìm x nguyên để A nguyên
\(\left(\dfrac{\sqrt{x}}{x-4}-\dfrac{1}{\sqrt{x}+2}\right):\dfrac{\sqrt{x}-2}{x-4}\)
a) Tìm ĐKXĐ và rút gọn biểu thức A
b) Tìm giá trị của x để A< O
c) Tìm giá trị nguyên của x để biểu thức A nhận giá trị nguyên
1) cho A=x/x-1 + x/x+1 (x ko bằng +-1) và B=X^2-x/x^2-1 (x ko bằng +-1)
a)rút gọn A và tính A khi x=2
b)Rút gọn B và tìm x để B=2/5
c)tìm x thuộc Z để (A,B)thuộc Z
2)A =(2+x/2-x - 4x^2/x^2-4 - 2-x/2+x) : x^2 - 3x/2x^2 - x^3
a)rút gọn biểu thức A b) tính giá trị biểu thức A khi /x-5/=2
c)tìm x để A>0
3)B= x+2/x+3 - 5/x^2+x-6 - 1/2-x
a)rút gọn biểu thức B b)tìm x để B=3/2 c) tìm giá trị nguyên của x để B có giả trị nguyên
4)C= (2x/2x^2-5x+3 - 5/2x-3) : (3+2/1-x)
a)rút gọn biểu thức C b) tìm giá trị nguyên của biểu thức C biết :/2x-1/=3
c)tìm x để B >1 d) tìm giá trị nhỏ nhất của biểu thức C
5)D=(1 + x/x^2+1) : (1/x-1 - 2x/x^3+x-x^2-1)
a)rút gọn biểu thức D
b)tìm giá trị của x sao cho D<1
c)tìm giá trị nguyên của x để B có giá trị nguyên
bạn viết thế này khó nhìn quá
nhìn hơi đau mắt nhá bạn hoa mắt quá
Bài 2: Cho A = \(\dfrac{x}{x+2}\)
B = \(\dfrac{x^2}{x^2-4}-\dfrac{1}{2-x}+\dfrac{1}{x+2}\)
a. Tìm đkxđ của A,B
b. Rút gọn B
c. Tìm gt nguyên lớn nhất của x để B nguyên
d. Ta có: P = A.B. Tìm x để P = \(\dfrac{3}{2}\)
Cho A = (1/ x - 2 - 2x/ 4- x^2 + 1/ 2 + x) (2/x - 1)
a, Tìm ĐKXĐ (điều kiện xác định) của A
b,Rút gọn A
c,Tính giá trị của biểu thức A ( sau khi đã rút gọn) tại x thỏa mãn 2x^2 + x = 0
d, Tìm x để A = 1/2
e, Tìm x nguyên để A nguyên dương.
Help me ! Mai mình thi cuối kì 1 môn Toán rồi !
Cho biểu thức: \(A=\dfrac{x}{x-2}+\dfrac{2-x}{x+2}+\dfrac{12-10x}{x^2-4}\left(ĐKXĐ:x\ne\pm2\right)\)
a, Rút gọn A.
b, Tìm các giá trị nguyên của x để A nhận giá trị nguyên.
\(a,A=\dfrac{x\left(x+2\right)+\left(2-x\right)\left(x-2\right)+12-10x}{\left(x-2\right)\left(x+2\right)}\)
\(=\dfrac{x^2+2x+2x-4-x^2+2x+12-10x}{\left(x-2\right)\left(x+2\right)}\)
\(=\dfrac{-4x+8}{\left(x-2\right)\left(x+2\right)}\)
\(=\dfrac{-4\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}\)
\(=-\dfrac{4}{x+2}\)
Vậy \(A=-\dfrac{4}{\left(x+2\right)}\)
Cho C =\(\left(\dfrac{1}{x-1}-\dfrac{2x}{x^3-x^2+x-1}\right):\left(\dfrac{x^2+2}{x^3+x^2+x+1}+\dfrac{1}{x+1}\right)\)
a) Tìm đkxđ của C
b) Rút gọn C
c) Tìm x để C =\(\dfrac{2}{5}\)
d) Tìm x ϵ Z để giá trị C là số nguyên
Bổ sung phần c và d luôn:
c, C = \(\dfrac{2}{5}\)
\(\Leftrightarrow\) \(\dfrac{x^2-1}{2x^2+3}\) = \(\dfrac{2}{5}\)
\(\Leftrightarrow\) 5(x2 - 1) = 2(2x2 + 3)
\(\Leftrightarrow\) 5x2 - 5 = 4x2 + 6
\(\Leftrightarrow\) x2 = 11
\(\Leftrightarrow\) x2 - 11 = 0
\(\Leftrightarrow\) (x - \(\sqrt{11}\))(x + \(\sqrt{11}\)) = 0
\(\Leftrightarrow\) \(\left[{}\begin{matrix}x-\sqrt{11}=0\\x+\sqrt{11}=0\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left[{}\begin{matrix}x=\sqrt{11}\left(TM\right)\\x=-\sqrt{11}\left(TM\right)\end{matrix}\right.\)
d, Ta có: \(\dfrac{x^2-1}{2x^2+3}\) = \(\dfrac{x^2+\dfrac{3}{2}-\dfrac{5}{2}}{2\left(x^2+\dfrac{3}{2}\right)}\) = \(\dfrac{1}{2}\) - \(\dfrac{5}{4\left(x^2+\dfrac{3}{2}\right)}\)
C nguyên \(\Leftrightarrow\) \(\dfrac{5}{4\left(x^2+\dfrac{3}{2}\right)}\) nguyên \(\Leftrightarrow\) 5 \(⋮\) 4(x2 + \(\dfrac{3}{2}\))
\(\Leftrightarrow\) 4(x2 + \(\dfrac{3}{2}\)) \(\in\) Ư(5)
Xét các TH:
4(x2 + \(\dfrac{3}{2}\)) = 5 \(\Leftrightarrow\) x2 = \(\dfrac{-1}{4}\) \(\Leftrightarrow\) x2 + \(\dfrac{1}{4}\) = 0 (Vô nghiệm)
4(x2 + \(\dfrac{3}{2}\)) = -5 \(\Leftrightarrow\) x2 = \(\dfrac{-11}{4}\) \(\Leftrightarrow\) x2 + \(\dfrac{11}{4}\) = 0 (Vô nghiệm)
4(x2 + \(\dfrac{3}{2}\)) = 1 \(\Leftrightarrow\) x2 = \(\dfrac{-5}{4}\) \(\Leftrightarrow\) x2 + \(\dfrac{5}{4}\) = 0 (Vô nghiệm)
4(x2 + \(\dfrac{3}{2}\)) = -1 \(\Leftrightarrow\) x2 = \(\dfrac{-7}{4}\) \(\Leftrightarrow\) x2 + \(\dfrac{7}{4}\) = 0 (Vô nghiệm)
Vậy không có giá trị nào của x \(\in\) Z thỏa mãn C \(\in\) Z
Chúc bn học tốt! (Ko bt đề sai hay ko nữa :v)