\(Chox,y,z>0:xy+x=1\)
Tìm GTLN:\(\dfrac{x}{x+1}+\dfrac{y}{y+1}+\dfrac{z}{z+1}\)
x,y,z>0, x+y+z=1
Tìm GTLN P=\(\dfrac{x}{x+\sqrt{x+yz}}\)+\(\dfrac{y}{y+\sqrt{y+xz}}\)+\(\dfrac{z}{z+\sqrt{z+xy}}\)
chox,y,z>0 và x+y+z=3 CMR
P=\(\dfrac{1}{x^2+2yz}+\dfrac{1}{y^2+2zx}+\dfrac{1}{z^2+2xy}\ge1\)
Cho x,y,z > 0 và x+y+z=1, tìm GTLN của P= \(\dfrac{1}{x}\)+\(\dfrac{1}{y}\)+\(\dfrac{1}{z}\)
1. Cho \(x,y,z>0\), \(x+y\le1\) và \(xyz=1\). Tìm GTLN của biểu thức \(P=\dfrac{1}{1+4x^2}+\dfrac{1}{1+4y^2}-\sqrt{z+1}\)
2. Cho \(x,y,z>0\), \(xyz=x+y+z\). Tìm GTNN của biểu thức \(P=xy+yz+zx-\sqrt{1+x^2}-\sqrt{1+y^2}-\sqrt{1+z^2}\) (dùng phương pháp lượng giác hóa)
Cho x,y,z là các số thực dương thỏa mãn điều kiện x+y+z=1. Tìm GTNN của biểu thức \(A=\dfrac{x}{x+1}+\dfrac{y}{y+1}+\dfrac{z}{z+1}\)
Cho x,y,z lớn hơn 0 thỏa mãn 13x+5y+12z=9. Tìm GTLN của biểu thức \(b=\dfrac{xy}{2x+y}+\dfrac{3yz}{2y+z}+\dfrac{6zx}{2z+x}\)
Giúp mk nhanh nhé mọi người ơi
Cho x,y,z >0 thỏa mãn x+y+z=1.Tìm GTLN của
Q=\(\dfrac{x}{x+\sqrt{x+yz}}+\dfrac{y}{y+\sqrt{y+zx}}+\dfrac{z}{z+\sqrt{z+xy}}\)
\(\dfrac{x}{x+\sqrt{x+yz}}=\dfrac{x}{x+\sqrt{x\left(x+y+z\right)+yz}}=\dfrac{x}{x+\sqrt{\left(x+y\right)\left(x+z\right)}}\)\(\ge\dfrac{x}{x+\sqrt{xz}+\sqrt{xy}}=\dfrac{\sqrt{x}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\)
Cho x, y, z > 0 và \(x+y+z=1\) .Tìm MAX :
P= \(\dfrac{x}{x+yz}+\dfrac{y}{y+zx}+\dfrac{z}{z+xy}\)
\(P=\Sigma\dfrac{x}{x+yz}=\Sigma\dfrac{x}{x(x+y+z)+yz}=\Sigma\dfrac{x}{x^2+xy+xz+yz} \\=\Sigma\dfrac{x}{(x+y)(x+z)}=\dfrac{2(xy+yz+zx)}{(x+y)(y+z)(z+x)}\)
Bất đẳng thức phụ: \(\Pi(x+y)\ge\dfrac{8}{9}(\Sigma x)(\Sigma xy)\)
\(\Leftrightarrow \Sigma(x^2y+x^2z-2xyz)\ge0\) ( đúng do AM-GM )
Dấu ''='' xảy ra khi và chỉ khi: \(x=y=z\)
Áp dụng vào bài toán chính:
\(P\le\dfrac{2(xy+yz+zx)}{\dfrac{8}{9}(\Sigma x)(\Sigma xy)}=\dfrac{9}{4}\)
Dấu ''='' xảy ra khi và chỉ khi: \(x=y=z=\dfrac{1}{3}\)
Vậy \(\max P =\dfrac{9}{4} \) khi \(x=y=z=\dfrac{1}{3}\)
cho x,y,z>0 và x+y+z=\(\dfrac{3}{2}\)
tìm Min \(P=\dfrac{\sqrt{x^2+xy+y^2}}{\left(x+y\right)^2+1}+\dfrac{\sqrt{y^2+yz+z^2}}{\left(y+z\right)^2+1}+\dfrac{\sqrt{z^2+zx+x^2}}{\left(z+x\right)^2+1}\)
Đề bài sai, biểu thức này ko có min
Cho x, y, z khác 0, \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\). Chứng minh rằng: \(\dfrac{yz}{x^2}+\dfrac{xz}{y^2}+\dfrac{xy}{z^2}=3\)
Trước hết, ta đi chứng minh một bổ đề sau: Nếu \(a+b+c=0\) thì \(a^3+b^3+c^3=3abc\). Thật vậy, ta phân tích
\(P=a^3+b^3+c^3-3abc\)
\(P=\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc\)
\(P=\left(a+b+c\right)\left[\left(a+b\right)^2+\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)\)
\(P=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\).
Hiển nhiên nếu \(a+b+c=0\) thì \(P=0\) hay \(a^3+b^3+c^3=3abc\), bổ đề được chứng minh.
Do \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\) nên áp dụng bổ đề, ta được \(\dfrac{1}{x^3}+\dfrac{1}{y^3}+\dfrac{1}{z^3}=\dfrac{3}{xyz}\).
Vì vậy \(\dfrac{yz}{x^2}+\dfrac{zx}{y^2}+\dfrac{xy}{z^2}=\dfrac{xyz}{x^3}+\dfrac{xyz}{y^3}+\dfrac{xyz}{z^3}\) \(=xyz\left(\dfrac{1}{x^3}+\dfrac{1}{y^3}+\dfrac{1}{z^3}\right)\) \(=xyz.\dfrac{3}{xyz}=3\). Ta có đpcm