cho M =a/a+b + b/b+c + c/c+a với a,b,c >0
chứng tỏ rằng M không phải là số nguyên
M = a / a+b = b / b+c = c / c+a = a + b + c / (a+b) + (b+c) + (c+a) = a+b+c / (a+a) + (b+b) + (c+c)
= a+b+c / 2a + 2b + 2c = a+b+c / 2(a+b+c) = 1/2 không phải là số nguyên => M không thuộc Z.
Phan Thanh Tịnh giải sai bét rồi, "+" chứ có phải "-" đâu mà áp dung dãy tỉ số bằng nhau đc
Câu 2.
a) Cho a, b, c> 0. Chứng tỏ rằng M= (a/a+b) + ( b/b+c) + (c/c+a) không là số nguyên
b) Cho a,b,c thỏa mãn a+b+c = 0. Chứng minh rằng ab + bc + ca < hoặc bằng 0
Cho các số nguyên
a b c d , , , . Chứng tỏ rằng x, y là hai số đối nhau, biết:
Chứng tỏ rằng S = - ( a - b - c ) + ( -c + b + a) - ( a + b ) là 1 sô nguyên âm
Giúp mk đc 0 ;(
Cho a,b,c là các số nguyên dương. Chứng tỏ rằng: M= a/a+b + b/b+c + c/c+a không là số nguyên
Tham khảo:Câu hỏi của Tâm Lê Huỳnh Minh - Toán lớp 7 - Học trực tuyến OLM
Cho a, b, c >0. Chứng tỏ rằng :\(M=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\) không là số nguyên
Cho a, b, c > 0. Chứng tỏ rằng M = \(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\)không là số nguyên
tương tự bài này :
https://vn.answers.yahoo.com/question/index?qid=20100728065830AAMp07Z
Vì a+b<a+b+c=>a/(a+b)>a/(a+b+c)
Vì b+c<a+b+c=>b/b+c>b/(a+b+c)
Vì c+a<a+b+c=>c/c+a>c/(a+b+c)
=>a/a+b+b/(b+c)+c/c+a>a/(a+b+c)+b/(a+b+c)+c/(a+b+c)=(a+b+c)/(a+b+c)=1
=>a/a+b+b/b+c+c/c+a>1
=> điều phải chứng minh
Mình viết hơi khó đọc. bạn thông cảm nha !
Cho 3 số a, b, c, dương. M = \(\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}\) . Chứng tỏ rằng M không là số nguyên
Lời giải:
Với $a,b,c>0$ ta có:
$M> \frac{a}{a+b+c}+\frac{b}{b+c+a}+\frac{c}{c+a+b}=\frac{a+b+c}{a+b+c}{a+b+c}=1(*)$
Mặt khác:
Xét hiệu: $\frac{a}{a+b}-\frac{a+c}{a+b+c}=\frac{-bc}{(a+b)(a+b+c)}<0$ với mọi $a,b,c>0$
$\Rightarrow \frac{a}{a+b}< \frac{a+c}{a+b+c}$
Tương tự ta cũng có: $\frac{b}{b+c}< \frac{b+a}{a+b+c}; \frac{c}{c+a}< \frac{c+b}{a+b+c}$
Cộng lại ta được: $M< \frac{a+c+b+a+c+b}{a+b+c}=\frac{2(a+b+c)}{a+b+c}=2(**)$
Từ $(*); (**)\Rightarrow 1< M< 2$ nên $M$ không là số nguyên.
Cho \(M=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\)với a,b,c >0
Chứng tỏ rằng M không phải là số nguyên.
ta có\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{c+a+b}=1\)
ta lại có tương tự M<2
suy ra Mko ơphair số nguyên
Cho M=\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\)với a,b,c >0
Chứng tỏ rằng M không phải là số nguyên