1CHO TAM GIACSABC VUÔNG TẠI A, BIẾT AB =3; C=30 ĐỘ. KHI ĐÓ AC BẰNG
1Cho tam giác ABC cân tại A. Kẻ BH vuông với AC biết AH= 6cm HC= 3cm. Tính BC
2 Cho tam giác ABC vuông tại A có góc B=60độ CMR AB=1/2BC
Lê Xuân Trường
1-Xét tam giác ABH và tam giác ACH có
Góc AHB = Góc AHC = 90 độ
AC = AB (Do tam giác ABC cân tại A)
Góc ABH = Góc ACH(Do tam giác ABC cân tại A)
Suy ra tam giác ABH = tam giác ACH (cạnh huyền -góc nhọn )
Suy ra BH = CH =3 cm (2 cạnh tương ứng )
2 . Tui không biết làm thông cảm nhe !
giải tam giacsABC vuông tại A,biết
a AC=100cm và góc C=30độ
b AB=50cm và góc C=45độ
c Ab=70cm và AC=60cm
d AB=6cm và góc B=60độ
e AB=5cm và BC=7cm
1Cho tam giác ABC vuông tại A biết AH vuông góc với BC, AH = 2HC , HC= 12cm. Tính AB?
2 CHO TAM GIÁC ABC VUÔNG TẠI A BIẾT AH VUÔNG GÓC VỚI BC BIẾT DIỆN TÍCH TAM GIÁC AHC= 54CM^2 VÀ DIỆN TÍCH TAM GIÁC ABC= 96CM^2. TÍNH BC?
3, CHO TAM GIÁC ABC VUÔNG TẠI A BIẾT AH VUÔNG GÓC VỚI BC ,GỌI I, K LẦN LƯỢT LÀ HÌNH CHIẾU CỦA H TRÊN AB, AC. ĐẶT AB= c, AC = b.
a, tính AI , AK theo b, c
b, CMR : BI : CK = c^3 : b^3
Mọi người giúp em với ạ. Em cảm ơn nhiều ạ
cho hình tam giác ABC vuông tại A. M nằm trong hình tam giacsABC sao cho MA:MB:MC=2:3:1. Tính góc AMC
cho tam giacsABC vuông tại CC, góc A=60*, tia phân giác của góc BAC cắt BC tại E, kẻ EK vuông AB (K thuộc AB), kẻ BD vuông tia AE (D thuộc tia AE). C/m:
a,AC=AK
b,KA=KB
c,Ba đường thẳng AC,BD,KE cùng đi qua 1 điểm
a/ cm AC = AK :
Xét tam giác ACE và tam giác AKE có:
góc ACE = góc AKE (=90 độ)
cạnh AE chung
góc CAE = góc KAE ( AE là tia pg của góc BAC )
=> tam giác ACE = tam giác AKE ( cạnh huyền góc nhọn ) => AC = AK
b/ cm KA = KB :
Trong tam giác ABC có C = 90 độ , A = 60 độ => B = 30 độ
Vì AE là tia pg của góc CAB => góc CAE = góc BAE = 30 độ
Trong tam giác AEB có góc EAB = góc EBA = 30 độ (cmt) => tam giác AEB cân tại E có EK vừa là đường cao vừa là đường trung tuyến => KA =KB
c/ cm 3 đường thẳng AC , BD , KE cùng đi qua 1 điểm :
câu này bn áp dụng hệ thức Ta- lét để lm nha ^^
Bài 1
Cho tam giác OCD vuông tại O có đường cao OH. Biết CD = 24cm , HC/HD=3/5 . Tính độ dài OH, OC, OD.
Bài 2
Cho tam giác DEF vuông tại D, đường cao DI. Biết DF/EF=4/5 , DE = 18 cm . Giải tam giác DEF và tính độ dài DI.
Bài 1:
\(CH=24\cdot\dfrac{3}{8}=9\left(cm\right)\)
DH=15(cm)
\(OH=3\sqrt{15}\left(cm\right)\)
\(OC=\sqrt{OH^2+CH^2}=\sqrt{81+135}=6\sqrt{6}\left(cm\right)\)
\(OD=\sqrt{24^2-216}=6\sqrt{10}\left(cm\right)\)
Cho tam giác ABC cân tại A , đường cao AD . Biết AB=10cm , BC =12cm>
B) Gọi G là trọng tâm của tam giacsABC . chứng minh ba điểm a,g,d thẳng hàng
C) chứng minh tam giác ABG= tam giác ACG
Cho tam giacsABC ( AB < AC ) đường phân giác AD . đường vuông góc với AD tại D cắt AC ở E . Trên tia DC lấy I sao cho DI = DB . C/m : ABIE là hình thang.
1cho tam giác abc cân tại a có bd và ce là 2 đường trung tuyến cắt nhau tại g.gọi m và n lần lượt là trung điểm của gb và gc.
a.chứn minh de//mn và de=mn
b.chúng minh ag vuông vs bc và em vuông với bc
c.tính diện tích tam giác abc và tam giác emn biết ac =10cm,bc=12cm
a: Xét ΔABC có
E là trung điểm của AB
D là trung điểm của AC
Do đó: ED là đường trung bình của ΔABC
Suy ra: ED//BC và \(ED=\dfrac{BC}{2}\left(1\right)\)
Xét ΔGBC có
M là trung điểm của GB
N là trung điểm của GC
Do đó: MN là đường trung bình của ΔGBC
Suy ra:MN//BC và \(MN=\dfrac{BC}{2}\)(2)
Từ (1) và (2) suy ra DE//MN và DE=MN
b:Xét ΔEBC và ΔDCB có
EB=DC
\(\widehat{EBC}=\widehat{DCB}\)
BC chung
Do đó: ΔEBC=ΔDCB
Suy ra: \(\widehat{ECB}=\widehat{DBC}\)
hay \(\widehat{GBC}=\widehat{GCB}\)
Xét ΔGBC có \(\widehat{GBC}=\widehat{GCB}\)
nên ΔGBC cân tại G
Suy ra: GB=GC
Suy ra: G nằm trên đường trung trực của BC(3)
Ta có: AB=AC
nên A nằm trên đường trung trực của BC(4)
Từ (3) và (4) suy ra AG là đường trung trực của BC
hay AG\(\perp\)BC