Cho hàm y = f(x) thỏa mãn xy ' = y ylnx − 1 . Khi đó f(x) bằng
A. 1 1 + x
B. 1 1 + x + ln x
C. ln x + 1
D. x + 1 ln x
Cho hàm y = f ( x ) thỏa mãn xy'=y(ylnx-1) . Khi đó f(x) bằng.
A. 1 1 + x
B. 1 1 + x + ln x
C. ln ( x + 1 )
D. x + 1 ln x
1. Chứng minh rằng mọi hàm \(f:ℝ\rightarrowℝ\) thỏa mãn \(f\left(xy+x+y\right)=f\left(xy\right)+f\left(x\right)+f\left(y\right),\forall x,y\inℝ\)
2. Xác định tất cả các hàm số \(f\) liên tục trên \(ℝ\) thỏa mãn điều kiện \(f\left(2x-y\right)=2f\left(x\right)-f\left(y\right),\forall x,y\inℝ\)
Cho hàm số y = f(x) thỏa mãn f'(x) = ( x + 1 ) e x và ∫ f ( x ) d x = ( a x + b ) e x + c , với a, b, c là các hằng số. Khi đó
A. a + b = 0
B. a + b = 3
C. a + b = 2
D. a + b = 1
Cho hàm số y=f(x) thỏa mãn f ' ( x ) = ( x + 1 ) e x và ∫ f ( x ) d x = ( a x + b ) e x + c với a, b, c là các hằng số. Khi đó:
A. a + b = 0
B. a + b = 3
C. a + b = 2
D. a + b = 1
Cho hàm số f(x) thỏa mãn f(xy+1) = f(x).f(y)- f(y) -x +2 đúng với mọi số nguyên x,y bất kì. Tính giá trị 10.f(2018) + f(0)
Xét x=0,y=1 ta có f(1)=f(0)f(1)-f(1)+2 (a)
xét x=1,y=0 ta có f(1)=f(1)f(0)-f(0)+1 (b)
xét x=0,y=0 ta có f(1)=f(0)f(0)-f(0)+2 (c)
Lấy (a)-(b) suy ra f(1)=f(0)+1 thay vào (c) ta được f(0)+1=f(0)f(0)-f(0)+2 <=>f(0).f(0)-2f(0)+1=0 <=> f(0)=1 =>f(1)=f(0)+1=2
xét x=1 ta có f(y+1)=f(1)f(y)-f(y)-1+2=f(y)+1
f(y+1)=f(y)+1=f(y-1)+1+1=...F(y-n)+1+n (n là số tự nhiên)
vậy f(2018)=f(2017+1)=f(2017-2016)+1+2016( lấy n=2016)=f(1)+2017=2019
vậy biểu thức có giá trị là 10.2019+1=20191
Cho hàm số y = f(x) đạo hàm f’(x) = –x2 – 1. Với các số thực dương a, b thỏa mãn a<b. Giá trị nhỏ nhất của hàm số f(x) trên đoạn [a;b] bằng
A. f(b)
B. f( a b )
C. f(a)
D. f( a + b 2 )
Đáp án A
Phương pháp giải:
Hàm số đơn điệu trên đoạn nên giá trị nhỏ nhất – lớn nhất sẽ đạt tại đầu mút của đoạn
Lời giải:
Ta có suy ra f(x) là hàm số nghịch biến trên [a;b]
Mà . Vậy
Cho hàm số y= f( x) đạo hàm f’ (x) = -x2- 1. Với các số thực dương a, b thỏa mãn a< b. Giá trị nhỏ nhất của hàm số f( x) trên đoạn [ a; b] bằng
A. f(a)
B. f a b
C. f( b)
D. f a + b 2
Hàm số đơn điệu trên đoạn nên giá trị nhỏ nhất – lớn nhất sẽ đạt tại đầu mút của đoạn
Ta có f’ (x) = -x2-1< 0 với a< x< b ; suy ra hàm số y= f( x) là hàm số nghịch biến trên [ a; b].
Mà a< b nên f(a) > f( b)
Vậy m i n [ a ; b ] f ( x ) = f ( b )
Chọn C.
Cho hàm số f(x) thỏa mãn f'(x) + 2x.f(x) = f(x).lnx với f(x)≠ 0, ∀x và f(1) =1. Khi đó \(\left|f\left(2\right)\right|\) bằng ?
\(\Leftrightarrow\dfrac{f'\left(x\right)}{f\left(x\right)}+2x=lnx\Rightarrow\dfrac{f'\left(x\right)}{f\left(x\right)}=lnx-2x\)
Lấy nguyên hàm 2 vế:
\(\Rightarrow\int\dfrac{f'\left(x\right)}{f\left(x\right)}dx=\int\left(lnx-2x\right)dx\)
\(\Rightarrow ln\left|f\left(x\right)\right|=x\left(lnx-1\right)-x^2+C\)
Thay \(x=1\)
\(\Rightarrow ln\left|f\left(1\right)\right|=-2+C\Rightarrow C=2\)
\(\Rightarrow ln\left|f\left(x\right)\right|=x\left(lnx-1\right)-x^2+2\)
\(\Rightarrow\left|f\left(x\right)\right|=e^{x\left(lnx-1\right)-x^2+2}\)
\(\Rightarrow\left|f\left(2\right)\right|\)
Biết F(x) là một nguyên hàm của hàm số f(x) = x3 – 2x2 + 3 thỏa mãn F(1) = 3. Khi đó F(x) bằng
A. x 4 4 - 2 x 3 3 + 3 x + 5 12
B. x 4 4 - 2 x 3 3 + 3 x + 7 12
C. x 4 4 - 2 x 3 3 + 3 x + 1 12
D. 3 x 2 - 4 x + 4