Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Jolly Nguyễn
Xem chi tiết
Ngoc An Pham
Xem chi tiết
Thanh Tùng DZ
1 tháng 6 2018 lúc 20:57

Ta biến đổi : a2 ( b - c ) + b2 ( c - a ) + c2 ( a - b ) = 0 thành ( a - b ) ( b - c ) ( a - c ) = 0

Ta suy ra : a = b hoặc b = c hoặc c = a 

Vậy 3 số a,b,c tồn tại 2 số bằng nhau 

Thanh Tùng DZ
1 tháng 6 2018 lúc 20:58

à quên, cách biến đổi như vậy bạn tham khảo ở đây : Câu hỏi của Tên của bạn - Toán lớp 8 - Học toán với OnlineMath

Phạm Quang Đạt
Xem chi tiết
Nguyễn Nhật Minh
13 tháng 12 2015 lúc 16:37

\(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}=\frac{b}{a}+\frac{c}{b}+\frac{a}{c}\Leftrightarrow a^2c+b^2a+c^2b=b^2c+c^2a+a^2b\)

\(\Leftrightarrow a^2\left(c-b\right)+a\left(b^2-c^2\right)+bc\left(c-b\right)=0\)

\(\Leftrightarrow a^2\left(c-b\right)-a\left(c-b\right)\left(c+b\right)+bc\left(c-b\right)=0\)

\(\Leftrightarrow\left(c-b\right)\left(a^2-ac-ab+bc\right)=0\)

\(\Leftrightarrow\left(c-b\right)\left(a\left(a-c\right)-b\left(a-c\right)\right)=0\)

\(\Leftrightarrow\left(c-b\right)\left(a-c\right)\left(a-b\right)=0\)

=> a =b hoặc b =c hoặc a =c  ( dpcm)

Ngoc An Pham
Xem chi tiết
 Mashiro Shiina
17 tháng 9 2018 lúc 18:50

Ko mat tinh tong quat: \(a\ge b\ge c\)

\(a^2\left(a-b\right)+b^2\left(a-c\right)+c^2\left(a-b\right)=0\)

\(VT\ge a^2\left(b-b\right)+b^2\left(c-c\right)+c^2\left(a-b\right)\)

\(VT\ge0+0+c^2\left(a-b\right)\)

\(c^2\left(a-b\right)\ge0\) (a>=b)

\(VT\ge0\).Dấu bằng khi ít nhất 2 số bằng nhau (a=b hoặc a=c)

TUong tu voi cac cach gs khac

không cần biết
Xem chi tiết
Minh Triều
30 tháng 5 2015 lúc 20:44

kết quả sẽ ra là

(a-b)(a-c)(b-c)=0

Đỗ Lê Tú Linh
30 tháng 5 2015 lúc 20:51

\(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}=\frac{b}{a}+\frac{c}{b}+\frac{a}{c}\)

\(\frac{a^2c}{abc}+\frac{b^2a}{abc}+\frac{c^2a}{abc}=\frac{b^2c}{abc}+\frac{c^2a}{abc}+\frac{a^2b}{abc}\)

\(=>a^2c+b^2a+c^2a=b^2c+c^2a+a^2b\)

Vì \(c^2a=c^2a\)=> \(a^2c+b^2a=b^2c+a^2b\)

=>đpcm, hình như mình giải thiếu điều kiện thì phải 

Đỗ Lê Tú Linh
30 tháng 5 2015 lúc 21:10

ừ nhỉ, chỗ phần quy đồng

\(\frac{a^2c}{abc}+\frac{b^2a}{abc}+\frac{c^2b}{abc}=\frac{b^2c}{abc}+\frac{c^2a}{abc}+\frac{a^2b}{abc}\)

\(a^2c+b^2a+c^2b=b^2c+c^2a+a^2b\)

đến chỗ này tịt , bài nãy còn rút gọn được chứ phần này thì không

thôi, bạn suy nghĩ tiếp chỗ này nhé

Nguyễn Thị Huyền Trang
Xem chi tiết
Edogawa Conan
Xem chi tiết
Nguyễn Trần Tuấn Anh
10 tháng 12 2017 lúc 8:01

Câu hỏi của không cần biết - Toán lớp 8 - Học toán với OnlineMath

Hoàng Diệu Anh
Xem chi tiết
 Mashiro Shiina
10 tháng 10 2018 lúc 20:20

\(\Leftrightarrow a^2b-a^2c+b^2c-b^2a+c^2a-c^2b=0\)

\(\Leftrightarrow\left(a^2b-b^2a\right)-\left(a^2c-b^2c\right)+\left(c^2a-c^2b\right)\)

\(\Leftrightarrow ab\left(a-b\right)-c\left(a^2-b^2\right)+c^2\left(a-b\right)\)

\(\Leftrightarrow ab\left(a-b\right)-c\left(a+b\right)\left(a-b\right)+c^2\left(a-b\right)\)

\(\Leftrightarrow\left(a-b\right)\left[ab-c\left(a+b\right)+c^2\right]=0\)

\(\Leftrightarrow\left(a-b\right)\left(ab-ac-bc+c^2\right)=0\)

\(\Leftrightarrow\left(a-b\right)\left[a\left(b-c\right)-c\left(b-c\right)\right]=0\)

\(\Leftrightarrow\left(a-b\right)\left(a-c\right)\left(b-c\right)=0\)

\(\Leftrightarrow.....\)

nguyen van huy
Xem chi tiết
minhduc
5 tháng 12 2017 lúc 15:18

 a/b+b/c+c/a=b/a+c/b+a/c 
<=> a/b-b/a+b/c-c/b+c/a-a/c=0 
<=> a^2c-c^2a+c^2b-b^2c+b^2a-a^2b=0 
<=> ac(a-c)+bc(c-b)+ab(b-a)=0 
<=> ac(a-c)+bc(c-a+a-b)+ab(b-a)=0 
<=> ac(a-c)+bc(c-a)+bc(a-b)+ab(b-a)=0 
<=> (a-c)(a-b)c+(a-b)(c-a)b=0 
<=> (a-b)(c-a)(b-c)=0 
<=> a=b hay c=a hay b=c 
Vậy trong ba số a,b,c tồn tại 2 số =nhau