\(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}=\frac{b}{a}+\frac{a}{c}+\frac{c}{b}\)
\(\Leftrightarrow\frac{a^2c}{abc}+\frac{ab^2}{abc}+\frac{bc^2}{abc}=\frac{b^2c}{abc}+\frac{a^2b}{abc}+\frac{ac^2}{abc}\)
\(\Leftrightarrow a^2c+ab^2+bc^2-b^2c-a^2b-ac^2=0\)
\(\Leftrightarrow\left(a^2c-b^2c\right)+\left(ab^2-a^2b\right)+\left(bc^2-ac^2\right)=0\)
\(\Leftrightarrow c\left(a+b\right)\left(a-b\right)-ab\left(a-b\right)-c^2\left(a-b\right)=0\)
\(\Leftrightarrow\left(a-b\right)\left(bc+ac-ab-c^2\right)=0\)
\(\Leftrightarrow\left(a-b\right)\left(b-c\right)\left(c-a\right)=0\)
Từ đây ta có đpcm.