Hàm số nào sau đây không đồng biến trên khoảng − ∞ , + ∞
A. y = x − 1 x + 2
B. y = x 3 + 2
C. y = x + 1
D. y = x 5 + x 3 − 1
Cho hàm số: y = x - 2 x + 3
Khẳng định nào sau đây là đúng?
A. Hàm số đồng biến trên từng khoảng xác định;
B. Hàm số đồng biến trên khoảng (- ∞ ;+ ∞ );
C. Hàm số nghịch biến trên từng khoảng xác định;
D. Hàm số nghịch biến trên khoảng (- ∞ ;+ ∞ ).
cho hàm số y=f(x)=-x^2-2x+1. Mệnh đề nào sau đây là đúng? A. Hàm số nghịch biến trên khoảng (-1;+vô cực) B. Hàm số nghịch biến trên khoảng (-vô cực;-1) C. Hàm số đồng biến trên khoảng (-1;+vô cực) D. Hàm số đồng biến trên khoảng (-vô cực;0)
B. Hàm số nghịch biến trên khoảng \(\left(-\infty;-1\right)\)
Cho hàm số y = x3 + 3x2 – 9x – 7 . Khẳng định nào sau đây là khẳng định sai?
A. Hàm số nghịch biến trên khoảng (-3;1) .
B. Hàm số đồng biến trên (-9;-5).
C. Hàm số đồng biến trên R.
D. Hàm số đồng biến trên (5;+∞).
Tập xác định: D = R.
Ta có:
Bảng biến thiên:
Kết luận: Hàm số đồng biến trên các khoảng: (-∞;-3),(1;+∞) . Hàm số nghịch biến trên khoảng (-3;1)
Chọn C.
Cho hàm số:
Khẳng định nào sau đây là đúng?
A. Hàm số đồng biến trên từng khoảng xác định;
B. Hàm số đồng biến trên khoảng (- ∞ ;+ ∞ );
C. Hàm số nghịch biến trên từng khoảng xác định;
D. Hàm số nghịch biến trên khoảng (- ∞ ;+ ∞ ).
Hàm số nào sau đây không đồng biến trên khoảng - ∞ ; + ∞ ?
A. .
B. .
C. .
D. .
Hàm số nào sau đây không đồng biến trên khoảng − ∞ ; + ∞ ?
A. y = x − 2 x − 1
B. y = x 5 + x 3 − 10
C. y = x 3 + 1
D. y = x + 1
Hàm số nào sau đây không đồng biến trên khoảng (-∞;+∞)
A. y = x - 1 x + 2
B. y = x 3 + 2
C. y = x + 1
D. y = x 5 + x 3 - 1
Đáp án A
Phương pháp:
* Phương pháp xét sự đồng biến, nghịch biến của các hàm số:
- Bước 1: Tìm tập xác định, tính f'(x)
- Bước 2: Tìm các điểm tại đó f'(x) = 0 hoặc f'(x) không xác định
- Bước 3: Sắp xếp các điểm đó theo thứ tự tăng dần và lập bảng biến thiên
- Bước 4: Kết luận về các khoảng đồng biến, nghịch biến của hàm số.
Cách giải:
=> Hàm số đồng biến trên các khoảng (-∞;-2);(-2;+∞)
+) y = x3 + 2 ⇒ y'= 3x2 ≥ 0,∀ x∈R: Hàm số đồng biến trên R.
+) y = x + 1 ⇒ y' = 1 > 0, ∀ x∈R: Hàm số đồng biến trên R.
+) y = x5 + x3 - 1 ⇒ y' = 5x4 + 3x2 ≥ 0, ∀ x ∈ R; y' = 0 ⇔ x = 0 ⇒ Hàm số đồng biến trên R.
Cho hàm số y = f(x) có bảng biến thiên như sau
Hàm số y = f(x) đồng biến trên khoảng nào sau đây?
A. (1;3)
B. (0;1)
C. (-5;1)
D. (1;7)
Đáp án B
Phương pháp:
Hàm số y = f(x) đồng biến (nghịch biến) trên (a;b) khi và chỉ khi và f’(x) = 0tại hữu hạn điểm.
Cách giải:
Quan sát bảng biến thiên, ta thấy: hàm số y = f(x) đồng biến trên khoảng (0;2). Do Hàm số y = f(x) đồng biến trên khoảng (0;1)
Cho hàm số y = f x có bảng biến thiên như sau:
Hàm số y = f x đồng biến trên khoảng nào dưới đây?
A. − 3 ; 4 .
B. − ∞ ; − 1 .
C. 2 ; + ∞ .
D. − 1 ; 2 .
Đáp án D.
Phương pháp:
Xác định khoảng mà f ' x ≥ 0 , ( f ' x = 0 tại hữu hạn điểm trên khoảng đó).
Cách giải:
Hàm số y = f x đồng biến trên khoảng − 1 ; 2 .