Có 5 nhà toán học nam, 3 nhà toán học nữ và 4 nhà vật lý nam. Lập một đoàn công tác gồm 3 người cần có cả nam và nữ, có cả nhà toán học và vật lý thì có bao nhiêu cách.
A.120
B. 90
C.80
D.220
Có 5 nhà toán học nam, 3 nhà toán học nữ và 4 nhà vật lý nam. Lập một đoàn công tác gồm 3 người cần có cả nam và nữ, có cả nhà toán học và vật lý thì có bao nhiêu cách.
A. 120
B. 90
C. 80
D. 220
Đáp án B
Th1 : Số cách chọn ra 1 nhà toán học nam, 1 nhà toán học nữ, 1 nhà vật lý nam : 5.3.4 = 60
Th2 : Số cách chọn ra 2 nhà toán học nữ, 1 nhà vật lý nam : C 3 2 . C 4 1 = 12
Th3 : Số cách chọn ra 1 nhà toán học nữ, 2 nhà vật lý nam : C 3 1 C 4 2 = 18
Vậy có số cách chọn là : 90.
Có 7 nhà toán học nam, 4 nhà toán học nữ và 5 nhà vật lý nam. Có bao nhiêu cách lập đoàn công tác gồm 3 người có cả nam và nữ đồng thời có cả toán học và vật lý?
A. 210
B. 314
C. 420
D. 213
Đáp án A.
* Hướng dẫn giải:
+ Đoàn công tác gồm: 1 nhà toán học nữ, 1 nhà vật lý và 1 nhà toán học nam
Số các để chọn: cách
+ Đoàn công tác gồm: 1 nhà toán học nữ, 2 nhà vật lý
Số cách chọn: cách
+ Đoàn công tác gồm: 2 nhà toán học nữ, 1 nhà vật lý
Số cách chọn: cách
Vậy số cách lập là: 210 cách
Có 7 nhà toán học nam, 4 nhà toán học nữ và 5 nhà vật lý nam.Có bao nhiêu cách lập đoàn công tác gồm 3 người có cả nam và nữ đồng thời có cả toán học và vật lý.
A.210
B.314
C. 420
D. 213
Ta có các khả năng sau
Đoàn công tác gồm: 1 nhà toán học nữ, 1 nhà vật lý và 1 nhà toán học nam
Số cách chọn: cách
Đoàn công tác gồm: 1 nhà toán học nữ, 2 nhà vật lý
Số cách chọn: cách
Đoàn công tác gồm: 2 nhà toán học nữ, 1 nhà vật lý
Số cách chọn: cách
Vậy số cách lập là: 210 cách.
Chọn A.
Có 7 nhà toán học nam, 4 nhà toán học nữ và 5 nhà vật lý nam.Có bao nhiêu cách lập đoàn công tác gồm 3 người có cả nam và nữ đồng thời có cả toán học và vật lý.
A. 210
B. 314
C. 420
D. 213
Ta có các khả năng sau
- Đoàn công tác gồm: 1 nhà toán học nữ, 1 nhà vật lý và 1 nhà toán học nam
Số cách chọn: C 7 1 . C 4 1 . C 5 1 = 140 cách
- Đoàn công tác gồm: 1 nhà toán học nữ, 2 nhà vật lý
Số cách chọn: C 4 1 . C 5 2 = 40 cách
- Đoàn công tác gồm: 2 nhà toán học nữ, 1 nhà vật lý
Số cách chọn: C 4 2 . C 5 1 = 30 cách
Vậy số cách lập là: 140 + 40 + 30 = 210 cách.
Chọn đáp án A.
Có 5 nhà toán học nam, 3 nhà toán học nữ và 4 nhà vật lý nam. Lập một đoàn công tác có 3 người cần có cả nam và nữ, cần có cả nhà toán học và nhà vật lý. Hỏi có bao nhiêu cách?
có 5 cách nha bạn
th1: chọn 1 nhà toán học nam, 1 nhà toán học nữ, 1 nhà vật lý nam
có: 5.3.4 = 60 (cách chọn)
th2: chọn 2 nhà toán học nữ, 1 nhà vật lý nam
có: 3C2.4C1 = 12 (cách chọn)
th3: chọn 1 nhà toán học nữ, 2 nhà vật lý nam
có: 3C1.4C2 = 18 (cách chọn)
vậy có tổng cộng 60 + 12 + 18 = 90 cách chọn
có 5 cách nha
Có 5 nhà Toán học nam, 3 nhà Toán học nữ và 4 nhà Vật lí học nam. a) Có mấy cách lập nhóm gồm 2 người (1 nam và 1 nữ)? b) Có mấy cách lập đoàn đại biểu gồm 4 người trong đó có đúng 2 nhà Toán học và 2 nhà Vật lí học? c) Có mấy cách lập đoàn công tác gồm 3 người gồm cả nam lẫn nữ, cần có cả nhà Toán học lẫn Vật lí?
a.
Chọn 1 nam từ 9 nam có 9 cách
Chọn 1 nữ từ 3 nữ có 3 cách
\(\Rightarrow\) Có \(9.3=27\) cách chọn nhóm 1 nam 1 nữ
b.
Chọn 2 nhà toán học từ 8 nahf toán học: \(C_8^2\) cách
Chọn 2 nhà vật lý từ 4 nhà vật lý: \(C_4^2\) cách
\(\Rightarrow C_8^2.C_4^2\) cách lập
c.
Các trường hợp thỏa mãn: (1 nhà toán học nữ, 2 nhà vật lý nam), (1 nhà toán học nữ, 1 nhà toán học nam, 1 nhà vật lý nam), (2 nhà toán học nữ, 1 nhà vật lý nam)
\(\Rightarrow C_3^1.C_4^2+C_3^1.C_5^1.C_4^1+C_3^2.C_4^1\) cách
Một cuộc họp có sự tham gia của 5 nhà Toán học trong đó có 3 nam và 6 nữ, 6 nhà Vật lý trong đó có 3 nam và 3 nữ và 7 nhà Hóa học trong đó có 4 nam và 3 nữ. Người ta muốn lập một ban thư kí gồm 4 nhà khoa học với yêu cầu phải có đủ cả ba lĩnh vực ( Toán, Lý, Hóa ) và có cả nam lẫn nữ. Nếu mọi người đều bình đẳng như nhau thì số cách lập một ban thư kí như thế là
A. 1575
B. 1440
C. 1404
D. 171
Chọn C.
Số cách chọn 4 nhà khoa học mà có đủ cả ba lĩnh vực là
Số cách chọn 4 nhà khoa học nam mà có đủ cả ba lĩnh vực là
Số cách chọn 4 nhà khoa học nữ mà có đủ cả ba lĩnh vực là
Vậy số cách lập một ban thư kĩ thỏa mãn yêu cầu là:
Một đội ngũ cán bộ gồm 5 nhà toán học, 6 nhà vật lí và 7 nhà hóa học. Chọn từ đó ra 4 người để dự thảo khoa học. Có bao nhiêu cách chọn nếu: a) Phải có đủ 3 môn. b) Có nhiều nhất 1 nhà toán học và có đủ 3 môn. Help me 😭😭😭 Thanks trc
Đội dự tuyển học sinh giỏi giải toán trên máy tính cầm tay môn toán của trường phổ thông trung học Hoàng Quốc Việt có 4 học sinh nam khối 12, 2 học sinh nữ khối 12 và 2 học sinh nam khối 11. Để thành lập đội tuyển dự thi học sinh giỏi giải toán trên máy tính cầm tay môn toán cấp tỉnh nhà trường cần chọn 5 em từ 8 em học sinh trên. Tính xác suất để trong 5 em được chọn có cả học sinh nam và học sinh nữ, có cả học sinh khối 11 và học sinh khối 12?
A.
B.
C.
D.
Đáp án B.
Số cách chọn 5 em học sinh từ 8 học sinh trên là cách
- Để chọn 5 em thỏa mãn bài ra, ta xét các trường hợp sau
+) 1 nam khối 11, 1 nữ khối 12 và 3 nam khối 12 có cách
+) 1 nam khối 11, 2 nữ khối 12 và 2 nam khối 12 có cách
+) 2 nam khối 11, 1 nữ khối 12 và 2 nam khối 12 có cách
+) 2 nam khối 11, 2 nữ khối 12 và 1 nam khối 12 có cách
- Số cách chọn 5 em thỏa mãn bài ra là:
cách
Vậy xác suất cần tính là: