Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
abcdd
Xem chi tiết
nguyễn ngọc khánh vân
Xem chi tiết
Le Thi Khanh Huyen
3 tháng 1 2017 lúc 20:31

Tổng của góc ABC và góc ACB là 180o-80o = 100o 

\(\widehat{IBC}=\frac{\widehat{ABC}}{2}\)

\(\widehat{ICB}=\frac{\widehat{ACB}}{2}\)

\(\Rightarrow\widehat{IBC}+\widehat{ICB}=\frac{\widehat{ABC}+\widehat{ACB}}{2}=\frac{100^o}{2}=50^o\)

Xét tam giác IBC :

\(\widehat{BIC}=180^o-\left(\widehat{IBC}+\widehat{ICB}\right)=180^o-50^o=130^o\)

Vậy ...

Vũ Nguyễn
17 tháng 4 2018 lúc 23:21

\(\widehat{BIC}=130^0\)

Tan Dang
Xem chi tiết
Cô Hoàng Huyền
10 tháng 1 2018 lúc 14:42

A B C D E N I

a) Ta thấy \(\widehat{B}+\widehat{C}=180^o-60^o=120^o\)

\(\Rightarrow\widehat{IBC}+\widehat{ICB}=\frac{\widehat{B}+\widehat{C}}{2}=60^o\)

Vậy thì \(\widehat{BIC}=180^o-\widehat{IBC}-\widehat{ICB}=120^o\)

b) Ta có ngay \(\widehat{EIB}=\widehat{IBC}+\widehat{ICB}=60^o=\widehat{BIN}\)

Vậy thì \(\Delta EBI=\Delta NBI\left(g-c-g\right)\Rightarrow IE=IN\)

Tương tự ID = IN nên IE = IN = ID.

IS
22 tháng 2 2020 lúc 19:33

a, Trong tam giác ABC có : góc ABC + góc ACB + góc BAC = 180 độ
=> góc ABC + góc ACB  =180 độ - góc BAC = 180 độ - 60 độ = 120 độ
Mà BD và CE lần lượt là phân giác của góc ABC ; ACB nên 
120 độ = 2.góc IBC + 2.góc ICB = 2.(góc IBC + góc ICB)
=> góc IBC + góc ICB = 120 độ : 2 = 60 độ
Trong tam giác IBC có : góc IBC + góc ICB + góc BIC = 180 độ
=> góc BIC = 180 độ - (góc IBC + góc ICB) = 180 độ - 60 độ = 120 độ

Khách vãng lai đã xóa
Nguyễn Mai Nhan Ngọc
Xem chi tiết
Nguyễn Đức Anh
8 tháng 6 2016 lúc 10:36

A B C D E F I

a, 

ta có 

A + B+ C = \(180^0\)

B + C  = \(180^0\)-  A

mà BI là phân giác góc B

IBC = \(\frac{1}{2}\)B

CI là phân giác góc C 

ICB = \(\frac{1}{2}\)C

suy ra 

IBC + ICB = \(\frac{1}{2}\)B + \(\frac{1}{2}\)C = \(\frac{1}{2}\)( B + C ) = \(\frac{1}{2}\)\(180^0\)- A ) = \(\frac{1}{2}\) \(\left(180^0-60^0\right)\)\(60^0\)

mà IBC + ICB + BIC = \(180^0\)

suy ra BIC = \(180^0\)- ( IBC + ICB )

          BIC = \(180^0\)\(60^0\) 

          BIC = \(120^0\)

b,

ta có vì I là giao điểm của phân giác góc B và C 

suy ra phân giác góc A đi qua I suy ra tia AI trùng tia IF suy ra AF là phần giác góc A mà I cách đều AB ; AC ; BC 

nên IE = ID = IF

c,

ta có EIB + BIC =\(180^0\) 

       EIB = \(180^0-120^0\)

     EIB = \(60^0\)

    Mà EIB đối đỉnh góc DIC 

suy ra DIC = EIB =  \(60^0\)

vì IF là tia phân giác góc BIC 

nên BIF = CIF = \(\frac{1}{2}\)\(120^0\)\(60^0\)

EIF = BIE + BIF = \(60^0+60^0=120^0\)

DIF = DIC + CIF =  \(60^0+60^0=120^0\)

xét tam giác EIF và DIF có 

EIF = DIF = \(120^0\)

IF là cạnh chung 

IE = ID 

suy ra tam giác EIF = tam giác DIF ( c-g-c )

suy ra EF = DF 

ta có góc BIC đối đỉnh góc EID 

nên BIC = EID = \(120^0\)

xét tam giác EIF và EID có 

EID = EIF =\(120^0\)

ID = IF 

IE cạnh chung 

suy ra tam giác DIE = tam giác FIE ( c-g-c )

suy ra ED = EF 

mà EF = DF 

suy ra ED = EF = DF

suy ra tam giác EDF là tam giác đều 

d,

ta có IE = IF = ID 

nên I cách đều 3 đỉnh tam giác DFE nên I là giao điểm của 3 đường trung trực tam giác DEF 

mà trong tam giác đều 3 đường trung trực đồng thời là 3 đường phân giác của tam giác đó 

suy ra I là giao điểm của hai đường phân giác trong tam giác ABC vá DEF

Ngô Thị Mỹ Nương
Xem chi tiết
Phương An
26 tháng 1 2017 lúc 20:08

a)

Tam giác ABC có:

BAC + ABC + ACB = 1800

600 + ABC + ACB = 1800

ABC + ACB = 1800 - 600

ABC + ACB = 1200

BI là tia phân giác của ABC

=> ABI = IBC = ABC : 2

CI là tia phân giác của ACB

=> ACI = CIB = ACB : 2

Tam giác IBC có:

BIC + IBC + ICB = 1800

BIC + ABC : 2 + ACB : 2 = 1800

BIC + \(\frac{1}{2}\) . (ABC + ACB) = 1800

BIC + 1200 : 2 = 1800

BIC + 600 = 1800

BIC = 1800 - 600

BIC = 1200

b)

FI là tia phân giác của BIC

=> CIF = FIB = BIC : 2 = 1200 : 2 = 600

EIB + BIC = 1800

EIB + 1200 = 1800

EIB = 1800 - 1200

EIB = 600

mà FIB = 600 (chứng minh trên)

=> EIB = FIB

Xét tam giác EIB và tam giác FIB có:

EIB = FIB (chứng minh trên)

IB chung

IBE = IBF (IB là tia phân giác của ABC)

=> Tam giác EIB = Tam giác FIB (g.c.g)

c)

EIB = DIC (2 góc đối đỉnh)

CIF = FIB (FI là tia phân giác của BIC)

mà EIB = FIB (chứng minh trên)

=> DIC = CIF

Xét tam giác CIF và tam giác CID có:

FIC = DIC (chứng minh trên)

IC chung

ICF = ICD (IC là tia phân giác của ACB)

=> Tam giác CIF = Tam giác CID (g.c.g)

=> IF = ID (2 cạnh tương ứng)

mà IF = IE (Tam giác EIB = Tam giác FIB)

=> IF = IE = ID

d)

CF = CD (Tam giác CIF = Tam giác CID)

EB = FB (Tam giác EIB = Tam giác FIB)

=> EB + CD = FB + CF = BC

tôn nữ phương nhi
Xem chi tiết
Eremika4rever
Xem chi tiết
Nguyễn Lê Phước Thịnh
8 tháng 1 2021 lúc 8:49

a) Vì BI là tia phân giác của \(\widehat{ABC}\)

nên \(\widehat{IBC}=\dfrac{\widehat{ABC}}{2}\)

Vì CI là tia phân giác của \(\widehat{ACB}\)

nên \(\widehat{ICB}=\dfrac{\widehat{ACB}}{2}\)

Xét ΔABC có 

\(\widehat{A}+\widehat{ABC}+\widehat{ACB}=180^0\)(Định lí tổng ba góc trong một tam giác)

\(\Leftrightarrow\widehat{ABC}+\widehat{ACB}=180^0-\widehat{A}\)

\(\Leftrightarrow\widehat{ABC}+\widehat{ACB}=180^0-80^0=100^0\)

Ta có: \(\widehat{IBC}+\widehat{ICB}=\dfrac{\widehat{ABC}}{2}+\dfrac{\widehat{ACB}}{2}\)

\(\Leftrightarrow\widehat{IBC}+\widehat{ICB}=\dfrac{\widehat{ABC}+\widehat{ACB}}{2}=\dfrac{100^0}{2}\)

hay \(\widehat{IBC}+\widehat{ICB}=50^0\)

Xét ΔBIC có

\(\widehat{BIC}+\widehat{IBC}+\widehat{ICB}=180^0\)(Định lí tổng ba góc trong một tam giác)

\(\Leftrightarrow\widehat{BIC}+50^0=180^0\)

\(\Leftrightarrow\widehat{BIC}=180^0-50^0\)

hay \(\widehat{BIC}=130^0\)

Vậy: \(\widehat{BIC}=130^0\)

 

Uzumaki Naruto
Xem chi tiết
Trần Thị Hải Lý
Xem chi tiết
Kurosaki Akatsu
4 tháng 6 2017 lúc 14:23

Cậu tự vẽ hình !

Theo tổng ba goác trong một tam giác , ta có :

\(\widehat{BAC}+\widehat{ABC}+\widehat{ACB}=180^0\)

\(70^0+\widehat{ABC}+\widehat{ACB}=180^0\)

\(\widehat{ABC}+\widehat{ACB}=110^0\)

Vì I là là giao điểm ba đường phân giác nên 

BI là phân giác của góc ABC

\(\Rightarrow\widehat{ABI}=\widehat{IBC}=\frac{\widehat{ABC}}{2}\)

CI là phân giác của góc ACB

\(\Rightarrow\widehat{ACI}=\widehat{ICB}=\frac{\widehat{ACB}}{2}\)

Ta có :

\(\widehat{IBC}+\widehat{ICB}=\frac{\widehat{ABC}+\widehat{ACB}}{2}=\frac{100^0}{2}=50^0\)

Và áp dụng tổng 3 góc trong tam giác lên tam giác BIC thì 

=> Góc BIC = 1800 - 500 = 1300

Còi Ham Chơi
4 tháng 6 2017 lúc 14:00

hỏi gì chạy ra mà hỏi cô 

Trần Khởi My
4 tháng 6 2017 lúc 14:02

tttttttt