Cho hình lăng trụ tam giác đều ABC.A'B'C' có A B = 2 a , A A ' = a 3 Gọi I là giao điểm của AB’ và A’B. Khoảng cách từ I đến mặt phẳng (BCC'B') bằNg
A. 3 a 4
B. 3 a 2
C. 3 a 4
D. 3 a 2
Cho hình lăng trụ đứng ABC.A'B'C' có đáy là tam giác đều cạnh a. Cạnh bên AA'=a 2 . Thể tích khối lăng trụ ABC.A'B'C' là:
A. V = a 3 6 4
B. V = a 3 6 2
C. V = a 3 6 12
D. V = a 6 4
a) Cho hình lăng trụ đứng ABC.A'B'C' có đáy ABC là tam giác vuông cân tại A, AB=a. Biết diện tích tứ giác ABB'A' bằng \(2a^2\), thể tích khối lăng trụ ABC.A'B'C' bằng?
b) Cho hình lăng trụ đúng ABC.A'B'C' có đáy ABC là tam giác vuông cân tại A, AB=a. Biết góc giữa (AB'C') và (A'B'C') bằng 60°, thể tích khối lăng trụ ABC.A'B'C' bằng?
a: BB'=2a^2:a=2a
V=BB'*S ABC
=2a*1/2a^2
=a^3
Cho hình lăng trụ đứng ABC.A'B'C' có đáy là tam giác đều cạnh a√2 . Gọi I là trung điểm B'C góc giữa AI và đáy bằng 60. Tính thể tích V của khối lăng trụ ABC. A'B'C' .
Cho hình lăng trụ ABC.A'B'C' có đáy ABC là tam giác vuông tại A, A B C ⏜ = 30 0 . Gọi M là trung điểm của AB, tam giác MA'C đều cạnh 2a 3 và nằm trong mặt phẳng vuông góc với đáy. Thể tích khối lăng trụ là ABC.A'B'C'
Cho hình lăng trụ tam giác đều ABC.A'B'C' có AA' = a 3 , AB = a. Gọi M là trung điểm BC. Tính thể tích V của hình chóp AMB’C’.
A. V = a 3 3 4
B. V = a 3 3
C. V = a 3 4
D. V = a 3 3 2
Cho hình lăng trụ ABC.A'B'C' có đáy ABC là tam giác đều cạnh a, biết A A = A B = A C = a . Tính thể tích khối lăng trụ A B C . A ' B ' C '
A. 3 a 3 4
B. a 3 2 4
C. a 3 3 4
D. a 3 4
Đáp án B
Ta thấy A ' . A B C là tứ diện đều cạnh a → V A ' . A B C = a 3 2 12
Vậy thể tích khối lăng trụ A B C . A ' B ' C ' là V = 3 × V A ' . A B C = 3. a 3 2 12 = a 3 2 4
Cho hình lăng trụ tam giác đều ABC.A'B'C' có AB=2a, AA'=a 3 . Tính thể tích khối lăng trụ ABC.A'B'C'.
Cho hình lăng trụ ABC.A'B'C' có đáy ABC là tam giác vuông tại A , A B C ^ = 30 ° . Gọi M là trung điểm của AB, tam giác MA'C đều cạnh 2 a 3 và nằm trong mặt phẳng vuông góc với đáy. Thể tích khối lăng trụ là ABC.A'B'C'
A. 24 2 a 3 7
B. 24 3 a 3 7
C. 72 3 a 3 7
D. 72 2 a 3 7
Cho hình lăng trụ tam giác A B C . A ' B ' C ' có đáy là tam giác đều cạnh a Cạnh bên tạo với đáy một góc 60 0 . Gọi M là trung điểm của B ' C ' và I là trung điểm của đoạn A ' M . Biết hình chiếu vuông góc của I trên mặt phẳng đáy A B C là trọng tâm cả tam giác A B C . Tính thể tích của khối lăng trụ A B C . A ' B ' C ' theo
A. a 3 3 4 .
B. a 3 3 48 .
C. a 3 3 16 .
D. a 3 3 12 .
Cho hình lăng trụ tam giác đều A B C . A ' B ' C ' có tất cả các cạnh bằng a. Diện tích mặt cầu ngoại tiếp hình lăng trụ A B C . A ' B ' C ' là: