Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
23 tháng 6 2017 lúc 17:15

Đáp án A.

Phương pháp: Suy ra cách vẽ của đồ thị hàm số y = |f(x – 1) + m| và thử các trường hợp và đếm số cực trị của đồ thị hàm số. Một điểm được gọi là cực trị của hàm số nếu tại đó hàm số liên tục và đổi chiều. 

Cách giải: Đồ thị hàm số y = f(x – 1) nhận được bằng cách tịnh tiến đồ thị hàm số y = f(x) sang phải 1 đơn vị nên không làm thay đổi tung độ các điểm cực trị

Đồ thị hàm số y = f(x – 1) + m nhận được bằng cách tịnh tiến đồ thị hàm số y = f(x – 1) lên trên m đơn vị nên ta có: yCD = 2 + m; yCT = –3 + m; yCT = –6 + m

Đồ thị hàm số y = |f(x – 1) + m| nhận được bằng cách từ đồ thị hàm số y = f(x – 1) + m lấy đối xứng phần đồ thị phía dưới trục hoành qua trục hoành và xóa đi phần đồ thị phía dưới trục hoành.

Để đồ thị hàm số có 5 cực trị 

=>S = {3;4;5} => 3+4+5 = 12

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
1 tháng 10 2018 lúc 16:35

Chọn C

Hoàng Nguyễn
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
4 tháng 12 2019 lúc 9:57

Đáp án là A

Minh Nguyệt
Xem chi tiết
Trần Thanh Phương
15 tháng 3 2021 lúc 19:39

Xét hàm \(f\left(x\right)=\dfrac{x+m}{x+1}\) có \(f'\left(x\right)=\dfrac{\left(x+m\right)'\left(x+1\right)-\left(x+m\right)\left(x+1\right)'}{\left(x+1\right)^2}=\dfrac{1-m}{\left(x-1\right)^2}\)

Cho \(f'\left(x\right)=\dfrac{1-m}{\left(x-1\right)^2}=0\Leftrightarrow m=1\)

Khi đó \(f\left(x\right)=\dfrac{x+1}{x+1}=1\)

\(\Rightarrow max_{\left[0;1\right]}\left|f\left(x\right)\right|+min_{\left[0;1\right]}\left|f\left(x\right)\right|=1+1=2\) ( thỏa mãn )

Vậy \(m=1\) thỏa mãn bài toán.

Xét \(m\ne1\), ta thấy \(f\left(x\right)\) đơn điệu trên \(\left[0;1\right]\), xét các trường hợp:

*) \(f\left(0\right).f\left(1\right)\le0\Leftrightarrow\dfrac{m+1}{2}\cdot m\le0\) \(\Leftrightarrow-1\le m\le0\)

\(\Rightarrow\left\{{}\begin{matrix}min_{\left[0;1\right]}\left|f\left(x\right)\right|=0\\max_{\left[0;1\right]}\left|f\left(x\right)\right|=max\left\{\dfrac{\left|m+1\right|}{2};\left|m\right|\right\}\end{matrix}\right.\)

Khi đó: \(max_{\left[0;1\right]}\left|f\left(x\right)\right|+min_{\left[0;1\right]}\left|f\left(x\right)\right|=2\)

\(\Leftrightarrow0+\dfrac{\left|\dfrac{m+1}{2}+m\right|+\left|\dfrac{m+1}{2}-m\right|}{2}=2\)

\(\Leftrightarrow\left|\dfrac{3m+1}{2}\right|+\left|\dfrac{-m+1}{2}\right|=4\)

\(\Leftrightarrow\left|3m+1\right|+\left|m-1\right|=8\) (1)

Xét các trường hợp:

+) \(m\le\dfrac{-1}{3}\) : \(\left(1\right)\Leftrightarrow-3m-1-m+1=8\Leftrightarrow m=-2\) ( loại )

+) \(m\ge1\) : \(\left(1\right)\Leftrightarrow3m+1+m-1=8\Leftrightarrow m=2\) ( loại )

+) \(-\dfrac{1}{3}< m< 1\) : \(\left(1\right)\Leftrightarrow3m+1-m+1=8\Leftrightarrow m=3\) ( loại )

*) \(f\left(0\right)\cdot f\left(1\right)>0\Leftrightarrow\dfrac{m+1}{2}\cdot m>0\Leftrightarrow\left[{}\begin{matrix}m>0\\m< -1\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}min_{\left[0;1\right]}\left|f\left(x\right)\right|=min\left\{\dfrac{\left|m+1\right|}{2};\left|m\right|\right\}\\max_{\left[0;1\right]}\left|f\left(x\right)\right|=max\left\{\dfrac{\left|m+1\right|}{2};\left|m\right|\right\}\end{matrix}\right.\)

Khi đó: \(min_{\left[0;1\right]}\left|f\left(x\right)\right|+max_{\left[0;1\right]}\left|f\left(x\right)\right|=2\)

\(\Leftrightarrow\dfrac{\left|\left|\dfrac{m+1}{2}+m\right|-\left|\dfrac{m+1}{2}-m\right|\right|}{2}+\dfrac{\left|\left|\dfrac{m+1}{2}+m\right|\right|+\left|\left|\dfrac{m+1}{2}-m\right|\right|}{2}=2\)

\(\Leftrightarrow\dfrac{\left|\left|3m+1\right|-\left|m-1\right|\right|}{4}+\dfrac{\left|\left|3m+1\right|+\left|m-1\right|\right|}{4}=2\)

\(\Leftrightarrow\dfrac{2\left|3m+1\right|}{4}=2\)

\(\Leftrightarrow\left|3m+1\right|=4\)

\(\Leftrightarrow\left[{}\begin{matrix}m=1\\m=\dfrac{-5}{3}\end{matrix}\right.\)

Tóm lại ở cả 2 trường hợp thì ta có \(m\in\left\{1;\dfrac{-5}{3}\right\}\) thỏa mãn đề bài.

Vậy \(S=\left\{1;\dfrac{-5}{3}\right\}\) có \(2\) phần tử.

 

 

 

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
24 tháng 11 2018 lúc 15:19

Vậy tổng các giá trị tuyệt đối của tất cả các phần tử thuộc S là 1.

Chọn C

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
20 tháng 4 2018 lúc 11:58

Chọn đáp án C.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
15 tháng 10 2017 lúc 15:20

nguyễn hoàng lê thi
Xem chi tiết