CMR:
* a / b = c / d *
thì a / b = a+c / b+d
CMR: nếu (a+b+c+d).(a-b-c+d)=(a-b+c-d).(a+b-c-d) thì a/c= b/d
Bài1:CMR từ tỉ lệ thức a/b=c/d suy ra tỉ lệ thức 5a+4b/5a-4b=5c+4d/5c-4d
Bài 2: a)CMR nếu a/b=c/d thì a^2+b^2/b^2+c^2=a/c b)Nếu a/b=b/c=c/d thì(a+b-c/b+c-d)^3=a/d
a) Cho \(\dfrac{a}{b}\)=\(\dfrac{c}{d}\) CMR: \(\dfrac{5a+3b}{5a-3b}\)=\(\dfrac{5c+3d}{5c-3d}\)
b) CMR: Nếu \(\dfrac{a}{b}\)=\(\dfrac{c}{d}\) thì : \(\dfrac{a}{b}\)=\(\dfrac{3a+2c}{3b+2d}\)
c) CMR: Nếu \(\dfrac{a}{b}\)=\(\dfrac{c}{d}\) thì \(\dfrac{7a^2+3ab}{11a^2-8b^2}\) = \(\dfrac{7c^2+3cd}{11c^{2^{ }}-8d^2}\)
\(\dfrac{a}{b}\) = \(\dfrac{c}{d}\)
\(\dfrac{a}{c}\) = \(\dfrac{b}{d}\)
\(\dfrac{a}{c}\) = \(\dfrac{5a}{5c}\) = \(\dfrac{3b}{3d}\) Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{c}\) = \(\dfrac{5a+3b}{5c+3d}\) (1)
\(\dfrac{a}{c}\) = \(\dfrac{5a-3b}{5c-3d}\) (2)
Kết hợp (1) và (2) ta có:
\(\dfrac{5a+3b}{5c+3d}\) = \(\dfrac{5a-3b}{5c-3d}\)
⇒ \(\dfrac{5a+3b}{5a-3b}\) = \(\dfrac{5c+3d}{5c-3d}\) (đpcm)
b; \(\dfrac{a}{b}\) = \(\dfrac{c}{d}\)
\(\dfrac{a}{b}\) = \(\dfrac{3a}{3b}\) = \(\dfrac{2c}{2d}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{b}\) = \(\dfrac{3a+2c}{3b+2d}\) (đpcm)
CMR: nếu (a+b+c+d).(a-b-c+d)=(a-b+c-d).(a+b-c-d) thì a/c= b/d
Giúp mik với ạ
(a+b+c+d)(a+d-b-c)=(a-b+c-d)(a+b-c-d)
=>(a+d)^2-(b+c)^2=(a-d)^2-(b-c)^2
=>(a+d)^2-(a-d)^2=(b+c)^2-(b-c)^2
=>(a+d-a+d)(a+d+a-d)=(b+c+b-c)(b+c-b+c)
=>4ad=4bc
=>ad=bc
=>a/c=b/d
Cmr nếu có
(a+b+c+d).(a-b-c+d)=(a-b+c-d).(a+b-c-d) thì a/b=c/d
CMR :
( x + y + c - d )( a - b - c - d ) = ( a + b - c + d )( a - b + c + d )
thì a + b/ a - b = a - b / c +d
cmr a,nếu a/b=c/d thì a+b/b+c=c+d/d
đặt k=a/b=c/d => a=bk;c=dk
=> \(\frac{a+b}{b}=\frac{b+bk}{b}=\frac{b\left(1+k\right)}{b}=1+k\)
=>\(\frac{c+d}{d}=\frac{dk+d}{d}=\frac{d\left(k+1\right)}{d}=k+1\)
=>nếu a/b=c/d thì a+b/b = c+d/d
cho a/b < c/d, cmr a/b<a+c/b+d<c/d
cmr nếu a/b<c/d thì a.d<b.c với b>0,b>0
CMR : Nếu (a + b + c + d )(a - b - c + d ) = ( a - b + c - d ) ( a + b - c - d ) thì a / c = b / d