Chứng minh trong tam vuông đường trung tuyến ứng với cạnh huyền thì bằng nửa cạnh huyền ..
dùng tính chất đường trung bình của tam giác chứng minh trong tam giác vuông đường trung tuyến ứng với cạnh huyền bằng nửa cạnh huyền.
https://hoc247.net/hoi-dap/toan-7/chung-minh-dinh-ly-trong-1-tam-giac-vuong-duong-trung-tuyen-ung-voi-canh-huyen-bang-nua-canh-huyen-faq195049.html
Tham khảo nha bạn chứ mk ko biết cách chứng minh dùng đường trung bình
Chứng minh rằng trong tam giác vuông, đường trung tuyến ứng với cạnh huyền thì bằng nửa cạnh huyền.
Giúp mh với.
Giả sử đó là tam giác vuông ABC, trung tuyến AM. Trên tia đối MA lấy điểm H sao cho M là trung điểm của AH.
=>MA=MH=1/2AH(*)
ΔAMC=ΔBMH(c.g.c)ΔAMC=ΔBMH(c.g.c)
=>ˆCAM=ˆBHMCAM^=BHM^và AC=BH
Mà hai góc này nằm ở vị trí so le trrong của 2 đường thẳng AC và BH
=> AC // BH
mà AC L AB => BH L AB => ˆABH=90oABH^=90o
Xét ΔABCΔABCvàΔBAHΔBAHcó
AC=BC
ˆBAC=ˆABH=90oBAC^=ABH^=90o
cạnh chung AB
=> ΔABC=ΔBAH(c.g.c)ΔABC=ΔBAH(c.g.c)
=> BC=AH(**)
Lại có MB=MC=1/2BC(***)
Từ (*),(**),(***)=> MA=MB=MC=1/2BC (đpcm)
1/ Chứng minh định lí: Trong tam giác vuông, trung tuyến ứng với cạnh huyền bằng nửa cạnh huyền.
2/ Chứng minh định lí: Nếu 1 tam giác có trung tuyến ứng với một cạnh bằng nửa cạnh ấy thì tam giác đó là tam giác vuông.
VẼ HÌNH - GHI GT + KL GIÙM LUÔN!
1/ Phần này đơn giản thôi bạn! Khi chứng minh tâm của đường tròn ngoại tiếp tam giác vuồn là trung điểm cạnh huyền thì ta chứng minh ngược lại là trung điểm của cạnh huyền trong 1 tam giác vuông là tâm của đường tròn ngoại tiếp.
Giả sử ta có tam giác ABC vuông tại A và O là trung điểm của cạnh huyền BC
=> AO là đường trung tuyến ứng với cạnh huyền
=> OA = OB =OC = 1/2 BC
=> O là tâm của đường tròn ngoại tiếp tam giác ABC
Vậy ....
2/ Giả sử ta có tam giác ABC có BC là đường kính của đường tròn ngoại tiếp tam giác.
Gọi O là tâm của đường tròn ngoại tiếp tam giác ABC
=>OA = OB =OC (*)
mà BC là đường kính của đường tròn ngoại tiếp
=> O là trung điểm BC
=> OB = OC = 1/2 BC(**)
từ (*) và (**) => OA = OB = OC = 1/2 BC
=> tam giác ABC vuông tại A
@Nhoc_sieu_pham đây là toán lớp 7 mà, sao lại giải cách lớp 9 như vậy được?
1> Giả sử đó là tam giác vuông ABC, trung tuyến AM. Trên tia đối MA lấy điểm H sao cho M là trung điểm của AH.
=>MA=MH=1/2AH(*)
\(\Delta AMC=\Delta BMH\left(c.g.c\right)\)
=>\(\widehat{CAM}=\widehat{BHM}\)và AC=BH
Mà hai góc này nằm ở vị trí so le trrong của 2 đường thẳng AC và BH
=> AC // BH
mà AC L AB => BH L AB => \(\widehat{ABH}=90^o\)
Xét \(\Delta ABC\)và\(\Delta BAH\)có
AC=BC
\(\widehat{BAC}=\widehat{ABH}=90^o\)
cạnh chung AB
=> \(\Delta ABC=\Delta BAH\left(c.g.c\right)\)
=> BC=AH(**)
Lại có MB=MC=1/2BC(***)
Từ (*),(**),(***)=> MA=MB=MC=1/2BC (đpcm)
Chứng minh định lý: Trong tam giác vuông, đường trung tuyến ứng với cạnh huyền thì bằng nửa cạnh huyền (dùng kiến thức lớp 7 giải giúp mình nha, cám ơn nhìu)
trên tia đối của tia MA lấy điểm D sao cho MD = MA
xét \(\Delta AMB\)và \(\Delta DMC\)có :
MB = MC ( gt )
\(\widehat{M_1}=\widehat{M_2}\)( hai góc đối đỉnh )
MA = MD ( do cách vẽ )
Suy ra : \(\Delta AMB\)= \(\Delta DMC\)( c.g.c )
Suy ra : AB = AC và \(\widehat{A_1}=\widehat{D}\) \(\Rightarrow\)AB // CD ( vì có cặp góc sole trong bằng nhau )
vì \(AC\perp AB\)( gt ) nên AC \(\perp\)CD ( quan hệ giữa tính song song và vuông góc )
Xét \(\Delta ABC\)và \(\Delta CDA\)có :
AB = CD ( chứng minh trên )
\(\widehat{A}=\widehat{C}=90^o\)
AC ( chung )
Vậy \(\Delta ABC\)= \(\Delta CDA\)( c.g.c ) suy ra BC = AD
vì \(AM=MD=\frac{AD}{2}\)nên \(AM=\frac{BC}{2}\)
Dựa vào kết quả của bài 65, hãy chứng minh rằng: Trong tam giác vuông, đường trung tuyến ứng với cạnh huyền bằng một nửa cạnh huyền.
Xét tam giác ABC vuông tại A. Gọi K là trung điểm của BC,
Theo chứng minh phần a ta có: KA = KB = KC
Suy ra: KA = BC/2
Vậy tam giác ABC vuông tại A có đường trung tuyến AK bằng nửa cạnh huyền BC.
Dùng tính chất đường trung bình của tam giác chứng minh trong tam giác vuông, trung tuyến ứng với cạnh huyền bằng nửa cạnh huyền.
G/s TAm giác ABC lấy M , N , Q lần lượt là trung điểm AB; AC;BC
CM AQ = MN
Tự nghĩ tiếp đi
Chứng minh định lí '' Trong tam giác vuông, trung tuyến ứng với cạnh huyền bằng một nửa cạnh huyền''
(GT,KL tự ghi nhé!)
Vẽ đoạn thẳng AK sao cho \(AH=\frac{AK}{2}\) (1)
Xét tam giác AHB và tam giác KHC có :
AH = AK (Cách vẽ)
AHB = KHC ( 2 góc đối đỉnh )
BH = HC (GT)
\(\Rightarrow\) tam giác AHB = tam giác KHC ( c.g.c)
\(\Rightarrow\) BAH = CKH ( 2 góc tương ứng )
\(\Rightarrow\) AB song song với CK ( cặp góc so le trong bằng nhau)
Mà AB vuông góc với AC (GT)
\(\Rightarrow\) CK vuông góc với AC
Xét tam giác ABC và tam giác CKA có :
AB = CK (Do tam giác AHB = tam giác KHC)
BAC = KCA = 90 độ
AC chung
\(\Rightarrow\) tam giác ABC = tam giác CKA ( c.g.c )
\(\Rightarrow\) BC = KA (2)
Từ (1) và (2) \(\Rightarrow\) \(AH=\frac{BC}{2}\)
CMR trong 1 tam giác vuông,đường trung tuyến ứng với cạnh huyền bằng nửa cạnh huyền
* Gợi ý: Dùng phương pháp chứng minh phản chứng
Cách khác (theo cách lớp 7):
Xét tam giác ABC vuông tại A,trung tuyến AD.Ta cần chứng minh: \(AD=\frac{1}{2}BC\)
Ta chứng minh ngược lại,tức là \(AD\ne\frac{1}{2}BC\)
+ Nếu \(AD>\frac{1}{2}BC\Rightarrow\widehat{B}>\widehat{A_2},AD>CD\Leftrightarrow\widehat{C}>\widehat{A}\) (Đ.lí về cạnh đối diện với góc trong tam giác)
Hay \(\widehat{B}+\widehat{C}>\widehat{A_2}+\widehat{A_1}=90^o>\widehat{A}\) (mâu thuẫn với giả thiết)
+ Chứng minh tương tự với \(AD< \frac{1}{2}BC\) được: \(\widehat{B}+\widehat{C}< \widehat{A_2}+\widehat{A_1}\Leftrightarrow90^o< \widehat{A}\) (mâu thuẫn)
Vậy ta luôn có: \(AD=\frac{1}{2}BC\) (đpcm)
Tam giác vuông ABC, vuông tại A, có AM là trung tuyến
trên tia đối của MA lấy điểm D sao cho MD=AM
Do đó AM=1/2 AD (1)
suy ra tứ giác ABDC là hình bình hành, có ^A=90*
nên ABDC là hình chữ nhật
suy ra AD=BC (2)
Từ (1) và (2) ta có AM = 1/2 BC
Vậy trong 1 tam giác vuông, đường trung tuyến ứng với cạnh huyền bằng nửa cạnh huyền.
Tham khảo thêm: Câu hỏi của Nguyễn Huỳnh Minh Thư - Toán lớp 7 - Học toán với OnlineMath