Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
ngọc hân
Xem chi tiết
Nguyễn Hoàng Minh
5 tháng 8 2021 lúc 16:34

https://hoc247.net/hoi-dap/toan-7/chung-minh-dinh-ly-trong-1-tam-giac-vuong-duong-trung-tuyen-ung-voi-canh-huyen-bang-nua-canh-huyen-faq195049.html

Tham khảo nha bạn chứ mk ko biết cách chứng minh dùng đường trung bình

 

ngọc hân
5 tháng 8 2021 lúc 16:37

đây là hình ạ

D A B M C

Nguyễn hoàng anh
Xem chi tiết
gia hung nguyen
16 tháng 3 2022 lúc 11:01

Giả sử đó là tam giác vuông ABC, trung tuyến AM. Trên tia đối MA lấy điểm H sao cho M là trung điểm của AH.

=>MA=MH=1/2AH(*)

ΔAMC=ΔBMH(c.g.c)ΔAMC=ΔBMH(c.g.c)

=>ˆCAM=ˆBHMCAM^=BHM^và AC=BH

Mà hai góc này nằm ở vị trí so le trrong của 2 đường thẳng AC và BH

=> AC // BH

mà AC L AB => BH L AB => ˆABH=90oABH^=90o

Xét ΔABCΔABCvàΔBAHΔBAHcó

AC=BC

ˆBAC=ˆABH=90oBAC^=ABH^=90o

cạnh chung AB

=> ΔABC=ΔBAH(c.g.c)ΔABC=ΔBAH(c.g.c)

=> BC=AH(**)

Lại có MB=MC=1/2BC(***)

Từ (*),(**),(***)=> MA=MB=MC=1/2BC (đpcm)

gia hung nguyen
16 tháng 3 2022 lúc 11:00

chứng minh cách lớp 7 hay 8 v

 

Huy Hoàng
Xem chi tiết
Nhóc_Siêu Phàm
16 tháng 12 2017 lúc 23:48

  1/ Phần này đơn giản thôi bạn! Khi chứng minh tâm của đường tròn ngoại tiếp tam giác vuồn là trung điểm cạnh huyền thì ta chứng minh ngược lại là trung điểm của cạnh huyền trong 1 tam giác vuông là tâm của đường tròn ngoại tiếp. 
Giả sử ta có tam giác ABC vuông tại A và O là trung điểm của cạnh huyền BC 
=> AO là đường trung tuyến ứng với cạnh huyền 
=> OA = OB =OC = 1/2 BC 
=> O là tâm của đường tròn ngoại tiếp tam giác ABC 
Vậy .... 
2/ Giả sử ta có tam giác ABC có BC là đường kính của đường tròn ngoại tiếp tam giác. 
Gọi O là tâm của đường tròn ngoại tiếp tam giác ABC 
=>OA = OB =OC (*) 
mà BC là đường kính của đường tròn ngoại tiếp 
=> O là trung điểm BC 
=> OB = OC = 1/2 BC(**) 
từ (*) và (**) => OA = OB = OC = 1/2 BC 
=> tam giác ABC vuông tại A 

Nhật Vy Nguyễn
20 tháng 2 2018 lúc 10:14

@Nhoc_sieu_pham đây là toán lớp 7 mà, sao lại giải cách lớp 9 như vậy được?

Nhật Vy Nguyễn
20 tháng 2 2018 lúc 10:26

1> Giả sử đó là tam giác vuông ABC, trung tuyến AM. Trên tia đối MA lấy điểm H sao cho M là trung điểm của AH.

=>MA=MH=1/2AH(*)

\(\Delta AMC=\Delta BMH\left(c.g.c\right)\)

=>\(\widehat{CAM}=\widehat{BHM}\)và AC=BH

Mà hai góc này nằm ở vị trí so le trrong của 2 đường thẳng AC và BH

=> AC // BH

mà AC L AB => BH L AB => \(\widehat{ABH}=90^o\)

Xét \(\Delta ABC\)\(\Delta BAH\)

AC=BC

\(\widehat{BAC}=\widehat{ABH}=90^o\)

cạnh chung AB

=> \(\Delta ABC=\Delta BAH\left(c.g.c\right)\)

=> BC=AH(**)

Lại có MB=MC=1/2BC(***)

Từ (*),(**),(***)=> MA=MB=MC=1/2BC (đpcm)

Nguyễn Huỳnh Minh Thư
Xem chi tiết
Thanh Tùng DZ
9 tháng 1 2018 lúc 17:59

A B C D M 1 2 1

trên tia đối của tia MA lấy điểm D sao cho MD = MA 

xét  \(\Delta AMB\)và \(\Delta DMC\)có :

MB = MC ( gt )

\(\widehat{M_1}=\widehat{M_2}\)( hai góc đối đỉnh )

MA = MD ( do cách vẽ )

Suy ra : \(\Delta AMB\)\(\Delta DMC\)( c.g.c )

Suy ra : AB = AC và \(\widehat{A_1}=\widehat{D}\) \(\Rightarrow\)AB // CD ( vì có cặp góc sole trong bằng nhau )

vì \(AC\perp AB\)( gt ) nên AC \(\perp\)CD ( quan hệ giữa tính song song và vuông góc )

Xét \(\Delta ABC\)và \(\Delta CDA\)có :

AB = CD ( chứng minh trên )

\(\widehat{A}=\widehat{C}=90^o\)

AC ( chung )

Vậy \(\Delta ABC\)\(\Delta CDA\)( c.g.c ) suy ra BC = AD

vì \(AM=MD=\frac{AD}{2}\)nên \(AM=\frac{BC}{2}\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
24 tháng 9 2017 lúc 15:06

Xét tam giác ABC vuông tại A. Gọi K là trung điểm của BC,

Theo chứng minh phần a ta có: KA = KB = KC

Suy ra: KA = BC/2

Vậy tam giác ABC vuông tại A có đường trung tuyến AK bằng nửa cạnh huyền BC.

Minh Trang Phạm Hồng
Xem chi tiết
Trần Đức Thắng
5 tháng 8 2015 lúc 22:07

G/s TAm giác ABC lấy M , N , Q lần lượt là trung điểm AB; AC;BC

CM AQ = MN 

Tự nghĩ tiếp đi 

 

 

 

luongngocha
Xem chi tiết
Nguyễn Đức Tiến
18 tháng 1 2016 lúc 21:13

A B C H K

(GT,KL tự ghi nhé!)

Vẽ đoạn thẳng AK sao cho \(AH=\frac{AK}{2}\) (1)

Xét tam giác AHB và tam giác KHC có :

AH = AK (Cách vẽ)

AHB = KHC ( 2 góc đối đỉnh )

BH = HC (GT)

\(\Rightarrow\) tam giác AHB = tam giác KHC ( c.g.c)

\(\Rightarrow\) BAH = CKH ( 2 góc tương ứng )

\(\Rightarrow\) AB song song với CK ( cặp góc so le trong bằng nhau)

   Mà AB vuông góc với AC (GT)

\(\Rightarrow\) CK vuông góc với AC

Xét tam giác ABC và tam giác CKA có :

   AB = CK (Do tam giác AHB = tam giác KHC)

   BAC = KCA = 90 độ

  AC chung

\(\Rightarrow\) tam giác ABC = tam giác CKA ( c.g.c )

\(\Rightarrow\) BC = KA (2)

Từ (1) và (2) \(\Rightarrow\) \(AH=\frac{BC}{2}\)

     

 

 

tughujdr
16 tháng 1 2016 lúc 19:52

de et qua thang khung moi khong biet

tth_new
Xem chi tiết
tth
16 tháng 11 2018 lúc 9:08

 Cách khác (theo cách lớp 7):

A B C D 2 1

Xét tam giác ABC vuông tại A,trung tuyến AD.Ta cần chứng minh: \(AD=\frac{1}{2}BC\)

Ta chứng minh ngược lại,tức là \(AD\ne\frac{1}{2}BC\)

+ Nếu \(AD>\frac{1}{2}BC\Rightarrow\widehat{B}>\widehat{A_2},AD>CD\Leftrightarrow\widehat{C}>\widehat{A}\) (Đ.lí về cạnh đối diện với góc trong tam giác)

Hay \(\widehat{B}+\widehat{C}>\widehat{A_2}+\widehat{A_1}=90^o>\widehat{A}\) (mâu thuẫn với giả thiết)

+ Chứng minh tương tự với \(AD< \frac{1}{2}BC\) được: \(\widehat{B}+\widehat{C}< \widehat{A_2}+\widehat{A_1}\Leftrightarrow90^o< \widehat{A}\) (mâu thuẫn)

Vậy ta luôn có: \(AD=\frac{1}{2}BC\) (đpcm)

Tam giác vuông ABC, vuông tại A, có AM là trung tuyến 
trên tia đối của MA lấy điểm D sao cho MD=AM 
Do đó AM=1/2 AD (1) 
suy ra tứ giác ABDC là hình bình hành, có ^A=90* 
nên ABDC là hình chữ nhật 
suy ra AD=BC (2) 
Từ (1) và (2) ta có AM = 1/2 BC 
Vậy trong 1 tam giác vuông, đường trung tuyến ứng với cạnh huyền bằng nửa cạnh huyền.

tth
16 tháng 11 2018 lúc 9:11

Tham khảo thêm: Câu hỏi của Nguyễn Huỳnh Minh Thư - Toán lớp 7 - Học toán với OnlineMath