Biết rằng phương trình 2 x 2 - 1 = 3 x + 1 có 2 nghiệm là a, b. Khi đó a + b + ab có giá trị bằng
A. - 1 + 2 l o g 2 3
B. 1 + l o g 2 3
C. -1
D. 1 + 2 l o g 2 3
Biết rằng phương trình \(\left(m-3\right)x^2-2\left(m+1\right)x-m-3=0\)
có một nghiệm là −1, nghiệm còn lại
của phương trình là:
Phương trình có một nghiệm là -1.
\(\Rightarrow-2\left(m+1\right)=m-3-m-3\)
\(\Leftrightarrow m=2\)
Phương trình trở thành:
\(-x^2-6x-5=0\)
\(\Leftrightarrow-\left(x+1\right)\left(x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x_1=-1\\x_2=-5\end{matrix}\right.\)
Vậy nghiệm còn lại là \(x_2=-5\).
giải phương trình: 2x= 7 -5/x
tìm 2 số x, y biết rằng x + y= 3 và xy=1
\(2x=7-\dfrac{5}{x}\)đk x khác 0
\(2x^2-7x+5=0\Leftrightarrow\left(x-1\right)\left(2x-5\right)=0\Leftrightarrow x=1;x=\dfrac{5}{2}\left(tm\right)\)
Giải phương trình:
x4 - 6x3-x2+54x-72=0
Biết rằng phương trình có một nghiệm là x=1
Phương trình này không có nghiệm là x = 1 nha bạn
1. Giải bài toán bằng cách lập phương trình.
Tìm số tự nhiên có hai chữ số biết rằng chữ số hàng chục lớn hơn chữ số hàng đơn vị là 2 và số đó lớn hơn tổng các bình phương các chữ số của nó là 1.
2. Cho phương trình: x2 –(m+1)x+2m-3 =0 (1)
+ Chứng minh rằng phương trình trên luôn có 2 nghiệm phân biệt với mọi giá trị của m.
+ Tìm giá trị của m để phương trình (1) có nghiệm bằng 3.
Xét xem x = -3 là nghiệm của bất phương trình nào trong hai bất phương trình sau 3x + 1 < x + 3 (1) và ( 3 x + 1 ) 2 < ( x + 3 ) 2 (2)
Từ đó suy ra rằng phép bình phương hai vế một bất phương trình không phải là phép biến đổi tương đương.
Thử trực tiếp ta thấy ngay x = -3 là nghiệm của bất phương trình (1) nhưng không là nghiệm bất phương trình (2), vì vậy (1) và (2) không tương đương do đó phép bình phương hai vế một bất phương trình không phải là phép biến đổi tương đương.
Nhận thấy rằng phương trình tích (x + 2)(x – 3) = 0, hay phương trình bậc hai x 2 – x – 6 = 0, có hai nghiệm là x 1 = -2, x 2 = 3. Tương tự, hãy lập những phương trình bậc hai mà nghiệm mỗi phương trình là một trong những cặp số sau : x 1 = 1 - 2 , x 2 = 1 + 2
Hai số 1 - 2 và 1 + 2 là nghiệm của phương trình :
[x – (1 - 2 )][x – (1 + 2 )] = 0
⇔ x 2 – (1 + 2 )x – (1 - 2 )x + (1 - 2 )(1 + 2 ) = 0
⇔ x 2 – 2x – 1 = 0
Cho phương trình x2+bx+c=0 (*) với b,c là các số thõa mãn 2b+4c=-1
a. chứng tỏ rằng phương trình (*) luôn có nghiệm
b. Tìm b,c biết rằng phương trình (*) có 2 nghiệm x1,x2 với x1-2x2=0
a) đenta=b^2-4c
2b+4c=-1=>c=-1-2b)/4
thay vô chứng minh nó lớn hơn 0
x1+x2=b
x1x2=c
ta có x1=2x2
thay vô tìm x1;x2 theo b,c rồi thay vô
mk tính được x1=2x;x2=b/3 thay cái này vô x1-2x2=0 tìm ra b
x1=căn(c/2);x2=căn(2c) thay vô cái x1-2x2=0 tìm ra c
Tìm giá trị của k, biết rằng một trong hai phương trình sau đây nhận x=5 làm nghiệm, phương trình còn lại x= -1 làm nghiệm:
2x=10 và 3 - kx=2
Ta thấy: \(2x=10\Leftrightarrow x=5\) vậy pt còn lại có nghiệm là x = - 1 thế vào ta được
\(3-k\left(-1\right)=2\Leftrightarrow k=-1\)
minh hoc lop 5 khong biet lam bai nay
Tìm giá trị của k, biết rằng một trong hai phương trình sau đây nhận x = 5 làm nghiệm, phương trình còn lại nhận x = -1 làm nghiệm:
2x = 10 và 3 – kx = 2.
Thay x = 5 vào vế trái của phương trình 2x = 10, ta thấy giá trị của hai vế bằng nhau. Vậy x = 5 là nghiệm của phương trình 2x = 10.
Khi đó x = -1 là nghiệm của phương trình 3 – kx = 2.
Thay x = -1 vào phương trình 3 – kx = 2, ta có:
k(-1) = 2
⇔ 3 + k = 2 ⇔ k = - 1
Vậy k = -1
Cho phương trình : \(x^2-2\left(m-1\right)x-3-m=0\) (1)
a, Chứng tỏ rằng phương trình (1) luôn có 2 nghiệm phân biệt với mọi m
b, Tìm m để phương trình (1) có 2 nghiệm \(x_1,x_2\) thỏa mãn \(x_1^2+x_2^2\ge10\)
a: \(\Delta=\left(2m-2\right)^2-4\left(-m-3\right)\)
\(=4m^2-8m+4+4m+12\)
\(=4m^2-4m+16\)
\(=\left(2m-1\right)^2+15>0\)
Do đó: Phương trình luôn có hai nghiệm phân biệt
b: Theo đề, ta có:
\(\left(x_1+x_2\right)^2-2x_1x_2>=10\)
\(\Leftrightarrow\left(2m-2\right)^2-2\left(-m-3\right)>=10\)
\(\Leftrightarrow4m^2-8m+4+2m+6-10>=0\)
\(\Leftrightarrow4m^2-6m>=0\)
=>m<=0 hoặc m>=3/2