Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Mai Tiến Đỗ
Xem chi tiết
Trần Minh Hoàng
2 tháng 1 2021 lúc 19:39

3: \(P=\dfrac{x}{\left(x+y\right)+\left(x+z\right)}+\dfrac{y}{\left(y+z\right)+\left(y+x\right)}+\dfrac{z}{\left(z+x\right)+\left(z+y\right)}\le\dfrac{1}{4}\left(\dfrac{x}{x+y}+\dfrac{x}{x+z}\right)+\dfrac{1}{4}\left(\dfrac{y}{y+z}+\dfrac{y}{y+x}\right)+\dfrac{1}{4}\left(\dfrac{z}{z+x}+\dfrac{z}{z+y}\right)=\dfrac{3}{2}\).

Đẳng thức xảy ra khi x = y = x = \(\dfrac{1}{3}\).

huyền nguyễn
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
28 tháng 12 2019 lúc 18:30

Đáp án D

Phương pháp giải:

Đặt ẩn phụ, đưa về hàm một biến, dựa vào giả thiết để tìm điều kiện của biến

Lời giải:

Từ giả thiết chia cả 2 vế cho x2y2 ta được :  

Đặt  ta có 

Khi đó  

Ta có  mà 

nên 

Dấu đẳng thức xảy ra khi Vậy Mmax = 16

Học Sinh Giỏi Anh
Xem chi tiết
cao van duc
16 tháng 6 2019 lúc 14:35

https://diendantoanhoc.net/topic/182493-%C4%91%E1%BB%81-thi-tuy%E1%BB%83n-sinh-v%C3%A0o-l%E1%BB%9Bp-10-%C4%91hsp-h%C3%A0-n%E1%BB%99i-n%C4%83m-2018-v%C3%B2ng-2/

cao van duc
16 tháng 6 2019 lúc 14:37

bài này năm trrong đề thi tuyển sinh vào lớp 10 ĐHSP Hà Nội Năm 2018 (vòng 2) bn có thể tìm đáp án trên mạng để tham khảo

Tuấn Nguyễn
16 tháng 6 2019 lúc 17:58

Sử dụng bất đẳng thức AM-GN, ta có:

\(x^2y^2+1\ge2xy,\) \(y^2z^2+1\ge2yz,\) \(z^2x^2+1\ge2zx\)

Cộng các bất đẳng thức trên lại theo vế, sau đó cộng hai vế của bất đẳng thức thu được với \(x^2+y^2+z^2\), ta được:

\(\left(x+y+z\right)^2\le x^2+y^2+z^2+x^2y^2+y^2z^2+z^2x^2+3=9\)

Từ đó suy ra: \(Q\le3\)

Mặt khác, dễ thấy dấu bất đẳng thức xảy ra khi \(x=y=z=1\)  nên ta có kết luận \(Max_Q=3\)

Ta sẽ chứng minh \(Q\ge\sqrt{6}\) với dấu đẳng thức xảy ra, chẳng hạn \(x=\sqrt{6},\) \(y=z=0.\) Sử dụng bất đẳng thức AM-GN, ta có:

\(2xy+x^2y^2\le x^2+y^2+x^2y^2\le x^2+y^2+z^2+x^2y^2+y^2z^2+z^2x^2=6\)

Từ đó suy ra: \(xy\le\sqrt{7}-1< 2\)

Chứng minh tương tự, ta cũng có: 

\(yz< 2,\) \(zx< 2.\)

Do đó, ta có: 

\(Q^2=x^2+y^2+z^2+2xy+2yz+2zx\ge x^2+y^2+z^2+x^2y^2+y^2z^2+z^2x^2=6\)

Hay: \(Q\ge\sqrt{6}\)

\(\Rightarrow Min_Q=\sqrt{6}\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
8 tháng 7 2017 lúc 7:52

Đáp án đúng : C

VRCT_Ran Love Shinichi
Xem chi tiết

Ta có (x+y)xy=x2+y2-xy

=> \(\frac{1}{x}+\frac{1}{y}=\frac{1}{x^2}+\frac{1}{y^2}-\frac{1}{xy}\)

<=>\(\frac{1}{x}+\frac{1}{y}=\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right)^2+\frac{3}{4}\left(\frac{1}{x}-\frac{1}{y}\right)^2\ge\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right)^2\)

<=> \(0\le\frac{1}{x}+\frac{1}{y}\le4\)

mà \(A=\frac{1}{x^3+y^3}=\left(\frac{1}{x}+\frac{1}{y}\right)^2\le16\)

Vậy Max A =16 khi \(x=y=\frac{1}{2}\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
9 tháng 4 2018 lúc 14:29

Ta có 

P = x 2 4 + 8 y + y 2 1 + x = x 2 4 + 8 y + 2 y 2 4 + 4 x ≥ x + 2 y 2 8 + 4 x + 2 y

Dấu “=” xảy ra khi x = 2y

Đặt t = x + 2y; t ≥ 8 . Khi đó  P ≥ t 2 8 + 4 t

Xét hàm số  f t = t 2 8 + 4 t , t ∈ [ 8 ; + ∞ )

Suy ra f(t) đồng biến trên [ 8 ; + ∞ )  nên  f t ≥ f 8 = 8 5 Vậy m a x P = 8 5 ⇔ x = 4 ; y = 2

Đáp án A

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
2 tháng 2 2019 lúc 5:50

Đáp án D

Ta có C 12 1 . C 10 1 = 120

Khi đó  C 12 1 . C 10 1 = 120   . Đặt C 12 1 . C 10 1 = 120

Ta luôn có C 12 1 . C 10 1 = 120

C 12 1 . C 10 1 = 120  Suy ra C 12 1 . C 10 1 = 120

Xét hàm số  f t = t 2 − 8 t + 3   trên khoảng − 1 ; + ∞ ,có f ' t = 2 t + 1 2 t + 4 t + 3 2 > 0 ; ∀ t > − 1

Hàm số f(t)  liên tục trên − 1 ; + ∞ ⇒ f t đồng biến trên − 1 ; + ∞

Do đó, giá trị nhỏ nhất của f(t)  là min − 1 ; + ∞ f t = f − 1 = − 3 . Vậy  P min = − 3

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
20 tháng 1 2018 lúc 15:55