Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phan Thị Thu Hiền
Xem chi tiết
TFBoys_Châu Anh
9 tháng 5 2016 lúc 12:08
Hiệu x - y43230860320002345
Tỉ số x : y4 : 12 : 16 : 35 : 3 7 : 2 
x576616120650003283
y1443086033000938
Phan Thị Thu Hiền
10 tháng 5 2016 lúc 9:22

sai rồi nha bạn

Vy Chó
Xem chi tiết
Wiao Đz
Xem chi tiết
ILoveMath
31 tháng 8 2021 lúc 15:18

\(x:y=1\dfrac{2}{3}\Rightarrow\dfrac{x}{y}=\dfrac{5}{3}\Rightarrow\dfrac{x}{5}=\dfrac{y}{3}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{5}=\dfrac{y}{3}=\dfrac{x-y}{5-3}=\dfrac{60}{2}=30\)

\(\dfrac{x}{5}=30\Rightarrow x=150\\ \dfrac{y}{3}=30\Rightarrow y=90\)

ILoveMath
31 tháng 8 2021 lúc 15:22

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{2}=\dfrac{y}{3}\Rightarrow\dfrac{x^2}{4}=\dfrac{y^2}{9}=\dfrac{x^2+y^2}{4+9}=\dfrac{52}{13}=4\)

\(\dfrac{x^2}{4}=4\Rightarrow x^2=16\\ \Rightarrow\left[{}\begin{matrix}x=-4\\x=4\end{matrix}\right.\)

\(\dfrac{y^2}{9}=4\Rightarrow y^2=36\Rightarrow\left[{}\begin{matrix}y=-6\\y=6\end{matrix}\right.\)

Vậy \(\left(x,y\right)=\left\{\left(-4;-6\right);\left(4;6\right)\right\}\)

Nguyễn Lê Phước Thịnh
1 tháng 9 2021 lúc 0:04

1: Ta có: \(x:y=5:3\)

nên \(\dfrac{x}{5}=\dfrac{y}{3}\)

mà x-y=60

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{5}=\dfrac{y}{3}=\dfrac{x-y}{5-3}=\dfrac{60}{2}=30\)

Do đó: x=150; y=90

tranbinh1512
Xem chi tiết
cát tường
Xem chi tiết
Anh Thư
Xem chi tiết
Nguyễn Huy Tú
28 tháng 12 2020 lúc 20:39

Bài 1 :

\(\frac{x-1}{x-5}=\frac{6}{7}\Leftrightarrow7x-7=6x-30\)

\(\Leftrightarrow x=-23\)

\(\frac{x-2}{x-1}=\frac{x+4}{x+7}\)ĐK : \(x\ne1;-7\)

\(\Leftrightarrow\left(x-2\right)\left(x+7\right)=\left(x+4\right)\left(x-1\right)\)

\(\Leftrightarrow x^2+5x-14=x^2+3x-4\)

\(\Leftrightarrow2x-10=0\Leftrightarrow x=5\)

Khách vãng lai đã xóa
Nhật Linh Đặng
Xem chi tiết
Thảo
Xem chi tiết

\(\dfrac{4}{x}=\dfrac{y}{21}=\dfrac{28}{49}=\dfrac{28:7}{49:7}=\dfrac{4}{9}\\ Vậy:x=\dfrac{4.9}{4}=9\\ y=\dfrac{4.21}{9}=\dfrac{28}{3}\)

\(\dfrac{x}{2}=\dfrac{3}{y}\\ \Leftrightarrow x.y=2.3=6\\ Vậy:\left[{}\begin{matrix}\left(x;y\right)=\left(1;6\right)=\left(6;1\right)\\\left(x;y\right)=\left(2;3\right)=\left(3;2\right)\end{matrix}\right.\)

\(3,\\ \dfrac{42}{54}=\dfrac{42:6}{54:6}=\dfrac{7}{9}\\ \dfrac{42}{54}=\dfrac{7}{x}=\dfrac{7}{9}\\ Vậy:x=\dfrac{7.9}{7}=9\)

Nguyễn Thế Phong
Xem chi tiết
Lightning Farron
28 tháng 9 2016 lúc 18:17

Câu 1:

a)Áp dụng tc dãy tỉ:

\(\frac{x}{3}=\frac{y}{7}=\frac{x+y}{3+7}=\frac{20}{10}=2\)

\(\Rightarrow\begin{cases}\frac{x}{3}=2\Rightarrow x=6\\\frac{y}{7}=2\Rightarrow y=14\end{cases}\)

b)Áp dụng tc dãy tỉ:

\(\frac{x}{5}=\frac{y}{2}=\frac{x-y}{5-2}=\frac{6}{3}=2\)

\(\Rightarrow\begin{cases}\frac{x}{5}=2\Rightarrow x=10\\\frac{y}{2}=2\Rightarrow y=4\end{cases}\)

Câu 2:

a)\(\frac{x}{7}=\frac{18}{14}\Rightarrow14x=18\cdot7\)

\(\Rightarrow14x=126\)

\(\Rightarrow x=9\)

b và c đề có vấn đề

Nguyễn Huy Tú
28 tháng 9 2016 lúc 18:55

Câu 1:

a) Giải:

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{x}{3}=\frac{y}{7}=\frac{x+y}{3+7}=\frac{20}{10}=2\)

+) \(\frac{x}{3}=2\Rightarrow x=6\)

+) \(\frac{y}{7}=2\Rightarrow y=14\)

Vậy cặp số \(\left(x,y\right)\) là \(\left(6,14\right)\)

b) Giải:

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{x}{5}=\frac{y}{2}=\frac{x-y}{5-2}=\frac{6}{3}=2\)

+) \(\frac{x}{5}=2\Rightarrow x=10\)

+) \(\frac{y}{2}=2\Rightarrow y=4\)

Vậy cặp số \(\left(x,y\right)\) là \(\left(10,4\right)\)

Câu 3:

Giải:

Áp dụng tính chất dãy tỉ số bằng nhau:

\(\frac{x}{2}=\frac{y}{4}=\frac{z}{6}=\frac{x-y+z}{2-4+6}=\frac{8}{4}=2\)

+) \(\frac{x}{2}=2\Rightarrow x=4\)

+) \(\frac{y}{4}=2\Rightarrow y=8\)

+) \(\frac{z}{6}=2\Rightarrow z=12\)

Vậy bộ số \(\left(x,y,z\right)\) là \(\left(4,8,12\right)\)

Câu 4:

Giải: 

Đặt \(\frac{a}{b}=\frac{c}{d}=k\)

\(\Rightarrow a=bk,c=dk\)

Ta có: 

\(\frac{a+b}{a-b}=\frac{bk+b}{bk-b}=\frac{b\left(k+1\right)}{b\left(k-1\right)}=\frac{k+1}{k-1}\) (1)

\(\frac{c+d}{c-d}=\frac{dk+d}{dk-d}=\frac{d\left(k+1\right)}{d\left(k-1\right)}=\frac{k+1}{k-1}\) (2)

Từ (1) và (2) suy ra \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\)

Lightning Farron
28 tháng 9 2016 lúc 18:19

Câu 3:

Áp dụng tc dãy tỉ:

\(\frac{x}{2}=\frac{y}{4}=\frac{z}{6}=\frac{x-y+z}{2-4+6}=\frac{8}{4}=2\)

\(\Rightarrow\begin{cases}\frac{x}{2}=2\Rightarrow x=4\\\frac{y}{4}=2\Rightarrow y=8\\\frac{z}{6}=2\Rightarrow z=12\end{cases}\)

Câu 4

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk;c=dk\)

Xét VT \(\frac{a+b}{a-b}=\frac{bk+b}{bk-b}=\frac{b\left(k+1\right)}{b\left(k-1\right)}=\frac{k+1}{k-1}\left(1\right)\)

Xét VP \(\frac{c+d}{c-d}=\frac{dk+d}{dk-d}=\frac{d\left(k+1\right)}{d\left(k-1\right)}=\frac{k+1}{k-1}\left(2\right)\)

Từ (1) và (2) ->Đpcm