Tìm x, y, z
dfrac{x+y+2}{z}dfrac{y+z+1}{x}dfrac{z+x-3}{y}dfrac{1}{x+y+z}
Áp dụng tích chất của dãy tỉ số bằng nhau, ta có
dfrac{x+y+2}{z}dfrac{y+z+1}{x}dfrac{z+x-3}{y}
dfrac{x+y+2+y+z+1+z+x-3}{z+x+y}dfrac{2left(x+y+zright)+left(1+2-3right)}{z+x+y}2
Vìdfrac{x+y+2}{z}dfrac{y+z+1}{x}dfrac{z+x-3}{y}dfrac{1}{x+y+z}
2dfrac{1}{x+y+z}2left(x+y+zright)1x+y+zdfrac{1}{2}
dfrac{x+y+2}{z}2x+y+22z
dfrac{y+z+1}{x}2y+z+12x
dfrac{z+x-3}{y}2z+x-32y
dfrac{1}{x+y+z}2x+y+zdfrac{1}{2}
+) x+y+z dfrac{1}{2}y+zdfra...
Đọc tiếp
Tìm x, y, z
\(\dfrac{x+y+2}{z}=\dfrac{y+z+1}{x}=\dfrac{z+x-3}{y}=\dfrac{1}{x+y+z}\)
Áp dụng tích chất của dãy tỉ số bằng nhau, ta có
\(\dfrac{x+y+2}{z}=\dfrac{y+z+1}{x}=\dfrac{z+x-3}{y}\\
=\dfrac{x+y+2+y+z+1+z+x-3}{z+x+y}=\dfrac{2\left(x+y+z\right)+\left(1+2-3\right)}{z+x+y}=2\\
Vì\dfrac{x+y+2}{z}=\dfrac{y+z+1}{x}=\dfrac{z+x-3}{y}=\dfrac{1}{x+y+z}\\
=>2=\dfrac{1}{x+y+z}=>2\left(x+y+z\right)=1=>x+y+z=\dfrac{1}{2}\\
=>\dfrac{x+y+2}{z}=2=>x+y+2=2z\\
\dfrac{y+z+1}{x}=2=>y+z+1=2x\\
\dfrac{z+x-3}{y}=2=>z+x-3=2y\\
\dfrac{1}{x+y+z}=2=>x+y+z=\dfrac{1}{2}\)
+) x+y+z = \(\dfrac{1}{2}=>y+z=\dfrac{1}{2}-x=>\dfrac{1}{2}-x+1=2x=>3x=\dfrac{3}{2}=>x=\dfrac{1}{2}\)
+)\(x+y+z=\dfrac{1}{2}=>x+y=\dfrac{1}{2}-z=>\dfrac{1}{2}-z+2=2z=>3z=\dfrac{5}{2}=>z=\dfrac{5}{6}\)
\(=>x+y+z=\dfrac{1}{2}+\dfrac{5}{6}+y=\dfrac{1}{2}=>\dfrac{4}{3}+y=\dfrac{1}{2}=>y=\dfrac{-5}{6}\)
Vậy \(x=\dfrac{1}{2}\\
y=\dfrac{-5}{6}\\
z=\dfrac{5}{6}\)
Ê mấy bọn 7B Nguyễn Lương Bằng ơi bài 2 Toán chiều làm thế này đúng chưa! Góp ý nha!