Chủ đề:
Chương 4: SỐ PHỨCCâu hỏi:
Số phức z thỏa mãn z^6-z^5+z^4-z^3+z^2-z+1=0. Tìm phần thực của w=z(z^2-z+1).
1) Cho \(z_1,...,z_6\) là nghiệm của \(z^6+2016z^5+2017z^4+2018z^3+2017z^2+2016z+1=0.\) Tính \(T=\left(z_1^2+1\right)\left(z_2^2+1\right)\left(z_3^2+1\right)\left(z_4^2+1\right)\left(z_5^2+1\right)\left(z_6^2+1\right)\)
2) số phức z=a+ib có |z|=1. Đặt \(a_0\) là phần thực của \(z^3-2z+\overline{z}.\) Tính giá trị nhỏ nhất của \(\dfrac{a_0+1}{a}\)
Trong không gian tọa độ cho mặt phẳng (P): x-y+2z-1=0, các điểm A(0;1;1), B(1;0;0) với A, B nằm trên mặt phẳng (P) và mặt cầu S: (x-2)^2+(y+1)^2+(z-2)^2=4. CD là một đường kính thay đổi của (S) sao cho CD//(P) và bốn điểm A,B,C,D tạo thành một tứ diện. Giá trị lớn nhất của thể tích tứ diện ABCD bằng bao nhiêu?