Đặt \(t=z^2\), ta có phương trình \(t^2+at+1=0 \qquad (1)\)
\(\Delta =a^2-4\)
PT đã cho có 4 nghiệm \(\Leftrightarrow\) (1) phải có hai nghiệm phân biệt
\(\Leftrightarrow \Delta\ne 0\Leftrightarrow a\ne \pm2\)
Khi đó (1) có nghiệm \(t=\dfrac{-a\pm \sqrt{a^2-4}}{2}\).
Không mất tính tổng quát, ta có thể giả sử: \(z_1=z_3;z_2=z_4\)
Khi đó ta có:
\([(z_1^2+4)(z_2^2+4)]^2=441\\ \Leftrightarrow \left(\dfrac{-a+\sqrt{a^2-4}}{2}+4\right)\left(\dfrac{-a-\sqrt{a^2-4}}{2}+4\right)=441\)
\(\Leftrightarrow (-a+8)^2-(a^2-4)=4.441\\ \Leftrightarrow -16a+68=1764\\ \Leftrightarrow a=-106\)