Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P): 2x+y+z-4=0 và hai đường thẳng d 1 : x - 3 2 = y - 2 1 = z - 6 5 , d 2 : x - 6 3 = y 2 = z - 1 1 . Phương trình đường thẳng d nằm trong mặt phẳng (P) và cắt hai đường thẳng d1, d2 là:
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P): 2x+y+z-4=0 và hai đường thẳng d 1 : x - 3 2 = y - 2 1 = z - 6 5 ; d 2 : x - 6 3 = y 2 = z - 1 1 . Phương trình đường thẳng d nằm trong mặt phẳng (P) và cắt hai đường thẳng d 1 , d 2 là:
A. x - 1 - 1 = y - 1 2 = z - 1 - 3
B. x - 1 2 = y - 1 - 3 = z - 1 - 1
C. x - 1 - 3 = y - 1 2 = z - 1 - 1
D. x - 1 2 = y - 1 - 1 = z - 1 - 3
Chọn B
Gọi A, B lần lượt là giao điểm của d1d2 với mặt phẳng (P). Đường thẳng d cần tìm đi qua A và B.
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P): x - y - z + 1 = 0 và (Q): 2x + 3y - z = 0. Viết phương trình chính tắc của đường thẳng giao tuyến D của hai mặt phẳng (P) và (Q). Chọn khẳng định sai
Trong không gian với hệ trục tọa độ Oxyz, phương trình mặt cầu (S) có tâm nằm trên đường thẳng d : x 1 = y - 1 1 = z - 2 1 và tiếp xúc với hai mặt phẳng (P): 2x - z - 4 = 0, (Q): x – 2y – 2 = 0
A . S : x - 1 2 + y - 2 2 + z - 3 2 = 5
B . S : x - 1 2 + y - 2 2 + z - 3 2 = 5
C . S : x + 1 2 + y + 2 2 + z + 3 2 = 5
D . S : x - 1 2 + y - 2 2 + z - 3 2 = 3
Chọn A
Gọi I là tâm mặt cầu (S). Khi đó I (t; 1+t; 2+t) và ta có:
Vậy mặt cầu (S) có tâm I (1;2;3) và bán kính
Do đó mặt cầu (S) có phương trình:
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P) : 2x + y – z + 3 = 0 và đường thẳng d : x = 2 + m t y = n + 3 t z = 1 - 2 t . Với giá trị nào của m, n thì đường thẳng d nằm trong mặt phẳng (P)?
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d: x - 1 1 = y - 1 2 = z - 2 - 1 và mặt phẳng (P): 2x+y+2z-1=0 Gọi d’ là hình chiếu của đường thẳng d lên mặt phẳng (P), vectơ chỉ phương của đường thẳng d’ là
Trong không gian hệ tọa độ Oxyz, cho đường thẳng Δ là giao tuyến của hai mặt phẳng (P): z-1= 0 và (Q): x+y+z-3 =0. Gọi d là đường thẳng nằm trong mặt phẳng (P), cắt đường thẳng: \(\dfrac{x-1}{1}=\dfrac{y-2}{-1}=\dfrac{z-3}{-1}\) và vuông góc với đường thẳng Δ. Phương trình đường thẳng d là?
Phương trình \(d_1\) : \(\dfrac{x-1}{1}=\dfrac{y-2}{-1}=\dfrac{z-3}{-1}\) dạng tham số: \(\left\{{}\begin{matrix}x=1+t\\t=2-t\\z=3-t\end{matrix}\right.\)
Gọi A là giao điểm d1 và (P), tọa độ A thỏa mãn:
\(3-t-1=0\Rightarrow t=2\Rightarrow A\left(3;0;1\right)\)
\(\overrightarrow{n_P}=\left(0;0;1\right)\) ; \(\overrightarrow{n_Q}=\left(1;1;1\right)\)
\(\overrightarrow{u_{\Delta}}=\left[\overrightarrow{n_P};\overrightarrow{n_Q}\right]=\left(-1;1;0\right)\)
\(\left[\overrightarrow{u_{\Delta}};\overrightarrow{n_P}\right]=\left(1;1;0\right)\)
Phương trình d: \(\left\{{}\begin{matrix}x=3+t\\y=t\\z=1\end{matrix}\right.\)
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d: x - 1 2 = y 1 = z + 1 3 và mặt phẳng (P): 2x+y-z=0. Mặt phẳng (Q) chứa đường thẳng d và vuông góc với mặt phẳng (P). Khoảng cách từ điểm O(0;0;0) đến mặt phẳng (Q) bằng
A. 1 3
B. 1 3
C. 1 5
D. 1 5
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng P : x - y - z + 1 = 0 và Q : 2 x + 3 y - z = 0 . Viết phương trình chính tắc của đường thẳng giao tuyến ∆ của hai mặt phẳng P và Q . Chọn khẳng định sai
A. x - 4 = y - 1 4 1 = z - 3 4 - 5
B. x + 3 5 4 = y - 2 5 - 1 = z 5
C. x 4 = y - 1 = z - 1 5
D. x - 1 4 = y - 1 = z - 2 5
Đáp án C
Gọi A Î D Þ Tọa độ của A thỏa mãn hệ PT
Phương trình chính tắc của đường thẳng giao tuyến D là
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng P = x + y + z − 3 = 0 và đường thẳng d : x 1 = y + 1 2 = z − 2 − 1 . Đường thẳng d ' đối xứng với d qua mặt phẳng (P) có phương trình là
A. x + 1 1 = y + 1 2 = z + 1 7
B. x + 1 1 = y + 1 − 2 = z + 1 7
C. x − 1 1 = y − 1 2 = z − 1 7
D. x − 1 1 = y − 1 − 2 = z − 1 7