Phương trình 3 c o t x - 3 = 0 có nghiệm là
A. x = π 3 + k 2 π k ∈ Z
B. x = π 6 + k π k ∈ Z
C. x = π 3 + k 2 π hoặc x = - π 3 + k 2 π k ∈ Z
D. x = π 3 + k π k ∈ Z
Số nghiệm của phương trình 2tan x – 2cotx – 3 = 0 trong khoảng - π 2 ; π là :
A.2
B.1
C. 4
D. 3
Dùng đường tròn lượng giác ta thấy trên khoảng - π 2 ; π phương trình có 3 nghiệm
Tìm m để phương trình cos 2 x + 2 m + 1 sin x - 2 m - 1 = 0 có đúng 3 nghiệm x ∈ 0 ; π
Phương trình tan ( x + π/ 3) có nghiệm là:
Xét một vecto quay OM→ có những đặc điểm sau:
- Có độ lớn bằng hai đơn vị chiều dài.
- Quay quanh O với tốc độ góc 1 rad/s
- Tại thời điểm t = 0, vecto OM→ hợp với trục Ox một góc 30o
Hỏi vecto quay OM→ biểu diễn phương trình của dao động điều hòa nào?
A. x = 2cos(t – π/3) B. x = 2cos(t + π/6)
C. x = 2cos(t - 30o) D. x = 2cos(t + π/3)
Chọn đáp án B.
Vecto quay OM→ có:
+ Có độ lớn bằng hai đơn vị chiều dài nên biên độ dao động A = 2.
+ Quay quanh O với tốc độ góc 1 rad/s nên tần số ω = 1rad/s.
+ Tại thời điểm t = 0, vecto OM→ hợp với trục Ox một góc 30o nên pha ban đầu là φ = π/6 rad.
Phương trình dao động: x = 2.cos(t + π/6).
Phương trình sin(x-π/3)=1 có nghiệm là?
A. x =5π/6 +k2π
B. x =π/3 +k2π
C. x =π/3 +kπ
D. x =5π/6 +kπ
Phương trình c o t ( x + π / 4 ) = 0 có nghiệm là:
A. x = - π/4 + kπ, k ∈ Z.
B. x = π/4 + kπ, k ∈ Z.
C. x = - π/4 + k2π, k ∈ Z.
D. x = π/4 + k2π, k ∈ Z.
Phương trình tan( x - π/4) = 0 có nghiệm là:
A. x = π/4 + kπ, k ∈ Z.
B. x = 3π/4 + kπ, k ∈ Z.
C. x = kπ, k ∈ Z.
D. x = k2π, k ∈ Z.
Tìm m để phương trình cos2x + 2(m+1)sĩn -2m-1=0 có đúng 3 nghiệm x ∈ 0 ; π
Trong các khoảng sau, m thuộc khoảng nào để phương trình sin^2 x-(2m+1) sin x.cos x + 2m cos^2 x = 0 có nghiệm thuộc khoảng (π/4 ; π/3)?
\(sin^2x-2m.sinx.cosx-sinx.cosx+2mcos^2x=0\)
\(\Leftrightarrow sinx\left(sinx-cosx\right)-2mcosx\left(sinx-cosx\right)=0\)
\(\Leftrightarrow\left(sinx-cosx\right)\left(sinx-2m.cosx\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}sinx=cosx\\sinx=2m.cosx\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}tanx=1\\tanx=2m\end{matrix}\right.\)
Do \(tanx=1\) ko có nghiệm đã cho nên \(tanx=2m\) phải có nghiệm trên khoảng đã cho
\(\Rightarrow tan\left(\dfrac{\pi}{4}\right)< 2m< tan\left(\dfrac{\pi}{3}\right)\)
\(\Rightarrow1< 2m< \sqrt[]{3}\)
\(\Rightarrow m\in\left(\dfrac{1}{2};\dfrac{\sqrt{3}}{2}\right)\) (hoặc có thể 1 đáp án là tập con của tập này cũng được)