Cho hình chóp S.ABCD có đáy ABC là tam giác với AB=2cm,AC=3cm, B A C ^ = 60 0 . S A ⊥ ( A B C ) . Gọi B 1 , C 1 lần lượt là hình chiếu vuông góc của A lên SB, SC. Tính thể tích khối cầu đi qua năm điểm A,B,C, B 1 , C 1
Cho hình chóp S.ABCD có đáy ABC là tam giác với AB=2 cm, AC=3cm, ∠ B A C = 60 ° , S A ⊥ ( A B C ) . Gọi B 1 , C 1 lần lượt là hình chiếu vuông góc của A lên SB, SC. Tính thể tích khối cầu đi qua năm điểm A, B, C, B 1 , C 1
A. 28 21 π 27 c m 3
B. 76 57 π 27 c m 3
C. 7 7 π 6 c m 3
D. 27 π 6 c m 3
Chọn A.
Phương pháp:
Xác định tâm, bán kính của khối cầu.
Thể tích khối cầu có bán kính r là:
Cách giải:
Gọi O là tâm đường tròn ngoại tiếp
DABC, đường kính AD.
Ta chứng minh O là tâm mặt cầu đi qua 6 điểm A, B, C, B 1 , C 1 và D
Bài 5. Cho hình chóp tứ giác đều S.ABCD có đáy ABCD là hình vuông cạnh a. Mặt bên hợp với đáy một góc . Tính VS ABCD . theo a và . Bài 6. Tính thể tích khối chóp tứ giác đều S.ABCD có cạnh đáy bằng a và góc ASB = α . Áp dụng: Tính VS ABCD . trong trường hợp α = 60 độ.
Bài 7. Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a, góc ABC =120độ . Cho SA vuông góc với đáy và SC = 2a .Tính thể tích hình chóp S.ABCD.
Bài 8. Cho hình chóp S.ABCD có đáy ABCD là một hình thang cân (AB//CD) với AC=20 cm BC=15 cm AB=25 cm . Cho SA vuông góc với đáy và SA =18cm . Tính thể tích của khối chóp.
Bài 9. Cho hình chóp S.ABC có SA vuông góc với đáy. Mặt bên SBC là tam giác đều cạnh a. Cho gócBAC =120 . Tính VS ABC .
. Bài 10. Cho khối chóp S.ABC có đường cao SA bằng a, đáy là tam giác vuông cân có AB= BC= a . Gọi B' là trung điểm của SB, C' là chân đường cao hạ từ A của tam giác S.ABC:
a.Tính thể tích khối chóp S.ABC
b.Chứng minh SC vuông góc với (AB'C')
c.Tính thể tích khối chóp S.ABC
Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân có AB = BC = a. Cạnh bên SA vuông góc với đáy, góc SBA = 60°. Gọi M là điểm nằm trên AC sao cho A C → = 2 C M → . Tính khoảng cách giữaSM và AB.
A. 6 a 7 7
B. a 7 7
C. a 7 21
D. 3 a 7 7
Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a, A B C ^ = 60 ° . Mặt bên SAB là tam giác đều và nằm trong mặt phẳng vuông góc với mặt phẳng đáy. Tính diện tích của mặt cầu ngoại tiếp hình chóp S.ABCD.
Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, tam giác SAB là tam giác đều nằm trong mặt phẳng tạo với đáy một góc 60 độ. Tính thể tích khối chóp S.ABCD.
A. a 3 4
B. 3 a 3 4
C. a 3 3 6
D. a 3 3 4
Cho hình chóp tứ giác đều S.ABCD có đáy ABCD là hình vuông cạnh AB = a (a>0) Góc giữa mặt bên và mặt đáy bằng 60 ° Tính thể tích khối chóp S.ABCD:
A. a 3 3 2
B. a 3 6
C. a 3 3 3
D. a 3 3 6
Cho hình chóp S.ABCD có A B C = A D C = 90 ° , SA vuông góc với đáy. Biết góc tạo bởi SC và đáy ABCD bằng 60 ° , CD = a và tam giác ADC có diện tích bằng 3 a 2 2 . Diện tích mặt cầu S m c ngoại tiếp hình chóp S.ABCD là
A. S m c = 16 π a 2
B. S m c = 4 π a 2
C. S m c = 32 π a 2
D. S m c = 8 π a 2
Đáp án A
Ta có SC là đường kính của mặt cầu ngoại tiếp hình chóp S.ABCD vì các góc ở đỉnh A, B, D đều nhìn SC dưới góc 90 độ
Cho hình chóp S.ABCD có đáy là hình thoi cạnh a, ∠ A B C = 60 ° Hình chiếu vuông góc của S lên mặt phẳng đáy là trọng tâm của tam giác ABC. Gọi M, N lần lượt là trung điểm của AB, SD. Biết cosin góc giữa hai đường thẳng CN và SM bằng 2 26 13 Thể tích khối chóp S.ABCD bằng
Chọn D
Gọi O = AC ∩ BD và G là trọng tâm tam giác ABC ta có SG ⊥ (ABCD)
Đặt SG = h. Gọi P là trung điểm DM. Ta có
Ta có:
Vậy ta có phương trình
Vậy
Cho hình chóp S . A B C D có đáy ABCD là tứ giác lồi và góc tạo bởi các mặt phẳng ( S A B ) , ( S B C ) , ( S C D ) , ( S D A ) với mặt đáy lần lượt là 90 ° , 60 ° , 60 ° , 60 ° . Biết rằng tam giác SAB vuông cân tại S , A B = a và chu vi tứ giác ABCD là 9a. Tính thể tích V của khối chóp S . A B C D ?
A. V = a 3 3 4
B. V = a 3 3
C. V = 2 a 3 3 9
D. V = a 3 3 9
Đáp án D.
Gọi H là trung điểm của AB thì S H ⊥ A B C D ⇒ S H = a 2 .
Khoảng cách từ H đến BC, CD, DA đều là a 2 3 ⇒ S A B C D = 1 2 . a 2 3 . 9 a − a = 2 a 2 3 .
Vậy thể tích khối chóp S.ABCD là V S . A B C D = 1 3 S H . S A B C D = 1 3 . a 2 . 2 a 2 3 = a 3 3 9 .