Cho hình chóp S.ABC, đáy ABC là tam
giác đều cạnh a; SA ⊥ (ABC). Gọi H, K
lần lượt là hình chiếu vuông góc của A
lên SB; SC. Diện tích mặt cầu đi qua 5
điểm A, B, C, K, H là
![]()
![]()
![]()
![]()
Cho hình chóp S.ABC có SA vuông góc với (ABC), AB=a, AC=a 2 , B A C ^ = 45 ° . Gọi B',C' lần lượt là hình chiếu vuông góc của A lên SB, SC. Thể tích khối cầu ngoại tiếp hình chóp A.BCC'B'.

![]()
![]()

Cho hình chóp S.ABCD có SA ^ (ABC), AB = 1, AC = 2 và B A C ^ = 60 ∘ .
Gọi M, N lần lượt là hình chiếu của A trên SB, SC. Tính bán kính R của
mặt cầu đi qua các điểm A, B, C, M, N.
![]()


![]()
Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a, cạnh bên SA vuông góc với mặt phẳng đáy. Gọi B 1 , C 1 lần lượt là hình chiếu của A trên SB, SC. Tính theo a bán kính R của mặt cầu đi qua năm điểm A,B, C, B 1 , C 1 .
![]()
![]()
![]()

Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a, cạnh bên SA vuông góc với mặt phẳng đáy. Gọi B 1 , C 1 lần lượt là hình chiếu của A trên SB, SC. Tính theo a bán kính R của mặt cầu đi qua năm điểm A, B, C, B 1 , C 1




Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a, cạnh bên SA vuông góc với mặt phẳng đáy. Gọi B 1 , C 1 lần lượt là hình chiếu của A trên SB, SC. Tính theo a bán kính R của mặt cầu đi qua năm điểm A , B , C , B 1 , C 1 .




Cho hình chóp S.ABCD có đáy ABC là tam giác vuông cân tại B, BC=2a, cạnh bên SA vuông góc với đáy. Gọi H, K lần lượt là hình chiếu của A lên SB và SC, khi đó thể tích của khối cầu ngoại tiếp hình chóp AHKCB là
![]()
![]()


Cho hình chóp S.ABCD có đáy là hình vuông, SA vuông góc với đáy, SA = AC. Mặt phẳng qua A vuông góc với SC cắt SB, SC, SD lần lượt tại B', C', D'. Tỉ số giữa thể tích hình chóp S.A'B'C'D' và thể tích hình chóp S.ABCD là:
A. 1/6 B. 1/4
C. 1/3 D. 1/2
Cho hình chóp S.ABCD có đáy là hình vuông ABCD cạnh a, SA vuông góc với đáy SA= a 2 . Gọi B, D là hình chiếu của A lần lượt lên SB, SD. Mặt phẳng cắt SC tại C'. Thể tích khối chóp S.AB'C'D' là:



