Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Buddy
Xem chi tiết
Nguyễn Lê Phước Thịnh
15 tháng 8 2023 lúc 21:04

Hàm số a,b là các hàm số logarit

a: \(log_{\sqrt{3}}x\)

Cơ số là \(\sqrt{3}\)

b: \(log_{2^{-2}}x\)

Cơ số là \(2^{-2}=\dfrac{1}{4}\)

Buddy
Xem chi tiết
Mai Trung Hải Phong
15 tháng 8 2023 lúc 20:00

Hàm số \(y=log_cx\) nghịch biến

\(\Rightarrow0< c< 1\) và các hàm \(y=log_ax,y=log_bx\) đồng biến nên \(a,b>1\)

Ta chọn \(x=100\Rightarrow log_a>log_b100\Rightarrow a< b\Rightarrow b>a>c\)

\(\Rightarrow B\)

nguyễn minh lâm
15 tháng 8 2023 lúc 19:58

B

Nguyễn Lê Phước Thịnh
15 tháng 8 2023 lúc 20:02

\(log_cx\) nghịch biến biến nên 0<c<1

\(log_ax;log_bx\) đồng  biến nên a>1; b>1

=>Loại D

\(log_ax>log_bx\left(x>1\right)\)

=>\(\dfrac{1}{log_xa}< \dfrac{1}{log_xb}\)

=>a<b

=>Chọn B

Buddy
Xem chi tiết
Hà Quang Minh
25 tháng 8 2023 lúc 10:06

Buddy
Xem chi tiết
Nguyễn Lê Phước Thịnh
13 tháng 8 2023 lúc 21:43

Chọn D

Buddy
Xem chi tiết
Hà Quang Minh
22 tháng 9 2023 lúc 20:01

Đáp án C.

Buddy
Xem chi tiết
Hà Quang Minh
26 tháng 8 2023 lúc 9:33

Buddy
Xem chi tiết
Hà Quang Minh
24 tháng 8 2023 lúc 1:01

Khoảng giá trị của x mà đồ thị hàm số \(y=log_2x\) nằm phía trên đường thẳng y = 2 là \(\left(4;+\infty\right)\)

\(\Rightarrow\) Tập nghiệm của bất phương trình \(log_2x>2\) là \(\left(4;+\infty\right)\)

Sách Giáo Khoa
Xem chi tiết
Nguyen Thuy Hoa
24 tháng 5 2017 lúc 7:49

Hàm lũy thừa, mũ và loagrit

An Lâm Bảo
28 tháng 8 2021 lúc 9:33

hacker

Khách vãng lai đã xóa
Buddy
Xem chi tiết
Nguyễn Lê Phước Thịnh
20 tháng 8 2023 lúc 20:12

a: \(y'=\left(x\cdot log_2x\right)'=log_2x+x\cdot\dfrac{1}{x\cdot ln2}=log_2x+\dfrac{1}{ln2}\)

b: \(y'=\left(x^3e^x\right)'=\left(x^3\right)'\cdot e^x+x^3\cdot\left(e^x\right)'\)

\(=3x^2\cdot e^x+x^3\cdot e^x\)

Buddy
Xem chi tiết
Hà Quang Minh
22 tháng 8 2023 lúc 12:25

Vì \(\dfrac{1}{e}\simeq0,368< 1\)

\(\Rightarrow y=log_{\dfrac{1}{e}}\left(x\right)\) nghịch biến trên D = \(\left(0;+\infty\right)\)

Chọn C.

Nguyễn Lê Phước Thịnh
13 tháng 8 2023 lúc 22:25

0<1/e<1

=>\(log_{\dfrac{1}{e}}\left(x\right)\) nghịch biến 

=>C