Tính các góc của tứ giác ABCD biết các góc của nó lần lượt tỉ lệ với các số 5 ; 4 ; 5 ; 4. Hãy xem tứ giác ABCD có dạng đặc biệt nào? Vì sao?
Cho tứ giác ABCD biết số đo của các góc A ^ ; B ^ ; C ^ ; D ^ tỉ lệ thuận với 4; 3; 5; 6. Khi đó số đo các góc A ^ ; B ^ ; C ^ ; D ^ lần lượt là:
A. 80 ° ; 60 ° ; 100 ° ; 120 °
B. 90 ° ; 40 ° ; 70 ° ; 60 °
C. 60 ° ; 80 ° ; 100 ° ; 120 °
D. 60 ° ; 80 ° ; 120 ° ; 100 °
Đáp án cần chọn là: A
Vì số đo của các góc A ^ ; B ^ ; C ^ ; D ^ tỉ lệ thuận với 4; 3; 5; 6 nên ta có:
A 4 = B 3 = C 5 = D 6 = A + B + C + D 4 + 3 + 5 + 6 = A + B + C + D 18
( tính chất dãy tỉ số bằng nhau )
Mà A ^ + B ^ + C ^ + D ^ = 360 ° nên ta có
A 4 = B 3 = C 5 = D 6 = A + B + C + D 18 = 360 0 18 = 20 0
⇒ A ^ = 4 × 20 ° = 80 ° ; B ^ = 3 × 20 ° = 60 ° C ^ = 5 × 20 ° = 100 ° ; D ^ = 6 × 20 ° = 120 °
Nên số đo các góc A ^ ; B ^ ; C ^ ; D ^ lần lượt là 80 ° ; 60 ° ; 100 ° ; 120 °
Tính các góc của tứ giác ABCD biết số đo của các góc tỉ lệ với các số
3: 6 : 4: 5
Áp dụng tc dtsbn:
\(\dfrac{\widehat{A}}{3}=\dfrac{\widehat{B}}{6}=\dfrac{\widehat{C}}{4}=\dfrac{\widehat{D}}{5}=\dfrac{\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}}{3+6+4+5}=\dfrac{360^0}{18}=20^0\\ \Rightarrow\left\{{}\begin{matrix}\widehat{A}=60^0\\\widehat{B}=120^0\\\widehat{C}=80^0\\\widehat{D}=100^0\end{matrix}\right.\)
Cho tứ giác ABCD biết số đo của các góc A ^ ; B ^ ; C ^ ; D ^ tỉ lệ thuận với 4; 9; 7; 6. Khi đó số đo các góc A ^ ; B ^ ; C ^ ; D ^ lần lượt là :
A. 120 ° ; 90 ° ; 60 ° ; 30 °
B. 140 ° ; 105 ° ; 70 ° ; 35 °
C. 144 ° ; 108 ° ; 72 ° ; 36 °
D. Cả A, B, C đều sai
Đáp án cần chọn là: C
Vì A ^ ÷ B ^ ÷ C ^ ÷ D ^ = 4 ÷ 3 ÷ 2 ÷ 1 nên ta có
A 4 = B 3 = C 2 = D 1 = A + B + C + D 4 + 3 + 2 + 1 = A + B + C + D 10
( tính chất tỉ lệ thức )
Mà A ^ + B ^ + C ^ + D ^ = 360 ° nên ta có
A 4 = B 3 = C 2 = D 1 = A + B + C + D 10 = 360 0 10 = 36 0
⇒ A ^ = 4 × 36 ° = 144 ° ; B ^ = 3 × 36 ° = 108 ° ; C ^ = 2 × 36 ° = 72 ° ; D ^ = 1 × 36 ° = 36 °
Cho tứ giác ABCD biết số đo của các góc A, B, C, D tỉ lệ thuận với 1,2,3,4.
Tính số đo của các góc trong tứ giác ABCD.
Tính số đo các góc của tứ giác ABCD. Biết rằng các góc A; B; C; D tỉ lệ với 6; 5; 3; 4.
ta có A;B;C;D tỉ lệ với 6;5;3;4
suy ra: A/6=B/5=C/3=D/4
Áp dụng dãy tỉ số bằng nhau :
A/6=B/5=C/3=D/4=A+B+C+D/6+5+3+4=360/18=20
suy ra A=20*6=120*
B=20*5=100*
C=20*3=60*
D=20*4=80*
vậy A=120*;B=100*;C=60*;D=80*
Cho tứ giác abcd .tính các góc của tứ giác biết 4 góc bằng nhau
Cho tứ giác abcd .tính độ lớn từng góc trong tứ giác nếu độ lớn góc A góc B góc C góc D lần lượt tỷ lệ với 1;2;4;5
1. Xét tứ giác ABCD ta có :
^A + ^B + ^C + ^D = 3600 ( định lí )
mà 4 góc đó bằng nhau
=> ^A = ^B = ^C = ^D = 3600/4 = 900
2. Xét tứ giác ABCD ta có :
^A + ^B + ^C + ^D = 3600 ( định lí ) (1)
mà ^A , ^B , ^C , ^D lần lượt tỉ lệ với 1 ; 2 ; 4 ; 5
=> \(\frac{\widehat{A}}{1}=\frac{\widehat{B}}{2}=\frac{\widehat{C}}{4}=\frac{\widehat{D}}{5}\)(2)
Từ (1) và (2) => Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{\widehat{A}}{1}=\frac{\widehat{B}}{2}=\frac{\widehat{C}}{4}=\frac{\widehat{D}}{5}=\frac{\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}}{1+2+4+5}=\frac{360^0}{12}=30^0\)
=> ^A = 300
^B = 300.2 = 600
^C = 300.4 = 1200
^D = 300.5 = 1500
Xét tứ giác ABCD có các góc bằng nhau
=> \(\widehat{A}=\widehat{B}=\widehat{C}=\widehat{D}\)
Mà \(\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}=360^o\left(dl\right)\)
\(\Leftrightarrow4\widehat{A}=360^o\Leftrightarrow\widehat{A}=\widehat{B}=\widehat{C}=\widehat{D}=90^o\)
Bài 2:
Xét tứ giác ABCD
=> \(\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}=360^o\)
Vì các góc tứ giác ABCD lần lượt tỉ lệ với 1:2:4:5
\(\Rightarrow\frac{\widehat{A}}{1}=\frac{\widehat{B}}{2}=\frac{\widehat{C}}{4}=\frac{\widehat{D}}{5}\)VÀ \(\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}=360^o\)
Theo tính chất dãy tỉ số bằng nhau
\(\frac{\widehat{A}}{1}=\frac{\widehat{B}}{2}=\frac{\widehat{C}}{4}=\frac{\widehat{D}}{5}=\frac{\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}}{1+2+4+5}=\frac{360^o}{12}=30^o\)
Do đó
\(\frac{\widehat{A}}{1}=30^o\Leftrightarrow\widehat{A}=30^o\)
\(\frac{\widehat{B}}{2}=30^o\Leftrightarrow\widehat{B}=60^o\)
\(\frac{\widehat{C}}{4}=30^o\Leftrightarrow\widehat{C}=120^o\)
\(\frac{\widehat{C}}{5}=30^o\Leftrightarrow\widehat{C}=150^o\)
Vậy.........
a,
1 tứ giác có tổng 4 góc là 360 độ nên 1 góc có :
360 : 4 = 90 độ
b,
Áp dụng tính chất dãy tỉ số bằng nhau :
\(\frac{a}{1}=\frac{b}{2}=\frac{c}{4}=\frac{d}{5}=\frac{a+b+c+d}{1+2+4+5}=\frac{360}{12}=30\)
\(\frac{a}{1}=30\Rightarrow a=30\)
\(\frac{b}{2}=30\Rightarrow b=60\)
\(\frac{c}{4}=30\Rightarrow c=120\)
\(\frac{d}{5}=30\Rightarrow d=150\)
Tính các góc ABC của tứ giác ABCD biết độ lớn các góc của tứ giác tỉ lệ với 1,2,3,4
Gọi 4 góc của tứ giác ABCD lần lượt là : a;b;c;d
Có \(a=\frac{b}{2}=\frac{c}{3}=\frac{d}{4}\)
Ta đã biết tổng 4 góc của tứ giác là : 360 độ
\(\frac{a}{1}=\frac{b}{2}=\frac{c}{3}=\frac{d}{4}=\frac{a+b+c+d}{1+2+3+4}=\frac{360}{10}=36\)
\(\Rightarrow a=36.1=36^o\)
\(b=36.2=72^o\)
\(c=36.3=108^o\)
\(d=36.4=144^o\)
tính số đo góc của một tâm giác biết các góc đo lần lượt tỉ lệ với các số 1;3;5
\(\text{Gọi x;y;z lần lượt là số đo góc 1;góc 2;góc 3:}\)
\(\text{(đk:x;y;z>0;đơn vị:độ)}\)
\(\text{Ta có:}\dfrac{x}{1}=\dfrac{y}{3}=\dfrac{z}{5}\text{ và }x+y+z=180\)
\(\text{Áp dụng tính chất dãy tỉ số bằng nhau:}\)
\(\dfrac{x}{1}=\dfrac{y}{3}=\dfrac{z}{5}=\dfrac{x+y+z}{1+3+5}=\dfrac{180}{9}=20\)
\(\Rightarrow x=20.1=20^0\)
\(y=20.3=60^0\)
\(z=20.5=100^0\)
\(\text{Vậy số đo góc 1 là:}20^0\)
\(\text{góc 2 là:}60^0\)
\(\text{góc 3 là:}100^0\)
Cho các góc A,B,C,D của tứ giác ABCD lần lượt tỉ lệ với 3,4,5,6. Chứng minh tứ giác ABCD là hình thang??
\(\frac{A}{3}=\frac{B}{4}=\frac{C}{5}=\frac{D}{6}=\frac{A+B+C+D}{3+4+5+6}=\frac{360}{18}=20\)
=>A=60độ,B=80 độ,C=100 độ,D=120 dộ
Ta thấy A+D=180 độ
Mà 2 góc này nằm ở vị trí trong cùng phía
=>AB//CD
=>đpcm