cho đường tròn tâm o dây AB < 2R; qua A kẻ tiếp tuyến với đường tròn và cắt đường thẳng qua O và vuông góc với AB tại C chứng minh CB là tiếp tuyến của đường tròn tại C ?
Cho đường tròn tâm O đường kính AB=2R . Dây CD không đi qua tâm O sao cho góc COD=90 độ . CD cắt AB ở E (D nằm giữa E và C ) sao cho DE=2R . Tính EC và ED theo R
Sửa lại đề của bạn là:
Cho đường tròn tâm O đường kính AB=2R. Dây cung CD không đi qua tâm O sao cho góc COD=90 độ. CD cắt AB ở E (D nằm giữa E và C ) sao cho OE=2R . Tính EC và ED theo R.
Bài làm:
Kẻ \(OM\perp CE\)và \(BN\perp CE\). Khi đó
Do COD là tam giác vuông cân nên \(CD=R\sqrt{2}\)và \(OM=MD=\frac{R\sqrt{2}}{2}\)
Ta có EB = BO và BN // OM nên EN = MN
suy ra NB là đường trung bình của tam giác vuông EMO nên \(NB=\frac{OM}{2}=\frac{R\sqrt{2}}{4}\)
Xét tam giác vuông ENB có \(EN=\sqrt{EB^2-BN^2}=\sqrt{R^2-\frac{2R^2}{4^2}}=\frac{R\sqrt{14}}{4}\)
mà MN = EN suy ra
\(DN=MN-MD=\frac{R\sqrt{14}}{4}-\frac{R\sqrt{2}}{2}=\frac{R\sqrt{14}-2R\sqrt{2}}{4}\)
Vậy \(ED=EN+ND=\frac{R\sqrt{14}}{4}+\frac{R\sqrt{14}-2R\sqrt{2}}{4}=\frac{R\sqrt{14}-R\sqrt{2}}{2}\)
\(EC=ED+DC=\frac{R\sqrt{14}-R\sqrt{2}}{2}+R\sqrt{2}=\frac{R\sqrt{14}+R\sqrt{2}}{2}\)
cho đường tròn (o;R) và một điểm A sao cho Oa=2R vẽ tiếp tuyến AB với đường tròn tâm o (b là tiếp tuyến ) vẽ dây Bc của đường tròn tâm o vuông góc với OA tại H
a) tính Ab theo R và chứng minh Ac là tiếp tuyến của đường tròn tâm O
b) c/m tam giác abc là tam giác đều
c) trên tia đối của tia BC lấy điểm Q. từ Q vẽ 2 tiếp tuyến QD vad QE của đường tròn tâm O ( D và E là 2 tiếp tuyến ). C/M 2 điểm A,E,D thẳng hàng
Bài 3. Cho nửa đường tròn (O), đường kính AB = 2R. Vẽ đường tròn tâm K đường kính OB.
a) Chứng tỏ hai đường tròn (O) và (K) tiếp xúc nhau.
b) Vẽ dây BD của đường tròn (O) ( BD khác đường kính), dây BD cắt đường tròn (K) tại M.Chứng minh: KM // OD
cho nữa đường tròn (O) đường kính AB=2R. Vẽ đường tròn tâm K đường kinh OB.
a..CM hai đường tròn tâm O và K tiếp xúc nhau
b..vẽ dây BD khác đường kinh của đường tròn (O) nó cắt đường tròn(K) tại M. CM KM//OD
cho nửa đường tròn (O) đường kính AB =2R. vẽ đường tròn tâm K đường kính OB
a) chứng tỏ hai đường tròn (O) và (K) tiếp xúc nhau
b) vẽ dây BD của đường tròn (O) (BD khác đường kính ), dây BD cắt đường tròn (K) tại M. Chứng minh KM // OD
Cho đường tròn tâm O đường kính AB=2R . Dây CD không đi qua tâm O sao cho góc COD=90 độ . CD cắt AB ở E (D nằm giữa E và C ) sao cho DE=2R . Tính EC và ED theo R
Giup minh nha 3 gio minh di hoc roi!!
Theo đầu bài thì CD cắt AB ở E (D nằm giữa E và C) nhưng D không thể nằm giữa E và C. DE = 2R = AB nhưng DE chỉ bằng R nên DE không thể bằng AB nên bài toán này không có cách giải.
Cho nửa đường tròn tâm O đường kính AB=2R. Gọi C là 1 điểm tùy ý trên nửa đường tròn (O) sao cho AC>BC (A, B khác C). Qua O kẻ đường thẳng vuông góc với AB cắt dây AC tại D. a) Chứng minh tứ giác BCDO nội tiếp b) Chứng minh AD.AC=AO.AB c) Vẽ tiếp tuyến tại C của đường tròn (O). Từ D vẽ đường thẳng song song với AB cắt tiếp tuyến này tại E. Chứng minh AD//OE.
Cho nửa đường tròn tâm O bán kính AB=2r. Vẽ dây AC sao cho góc BAC bằng 30*
a) Tính chu vi tam giác ABC
b) Trên tia tiếp tuyến Ax lấy AD=2CH(CH là đường cao tam giác ABC). Tính góc D.
c) Chứng minh CD là tiếp tuyến đường tròn tâm O