Gọi z 1 và z 2 là hai nghiệm phức của phương trình z 2 - 8 z + 17 = 0 . Tính giá trị của biểu thức T = z 1 + z 2
A. T = 34
B. T = 17
C. T = 2 17
D. T = 17
Trong tập các số phức gọi z 1 , z 2 là hai nghiệm của phương trình z 2 - z + 2017 4 với z 2 có phần ảo dương. Cho số phức z thỏa mãn |z- z 1 | = 1 Giá trị nhỏ nhất của P = |z- z 2 | là
A . 2016 - 1
B . 2017 - 1
C . 2017 - 1 2
D . 2016 - 1 2
Đáp án A
Phương trình
Ta có
Vật giá trị nhỏ nhất của biểu thức P là
Trong tập các số phức, gọi z 1 , z 2 là hai nghiệm của phương trình z 2 - z + 2017 4 = 0 với z 2 có thành phần ảo dương. Cho số phức z thỏa mãn z - z 1 = 1 . Giá trị nhỏ nhất của P = z - z 2 là
A. 2016 - 1
B. 2017 - 1 2
C. 2016 - 1 2
D. 2017 - 1
Đáp án A
Phương pháp.
Giả sử Giả phương trình ban đầu để tìm được nghiệm z 1 , z 2 Sử dụng giả thiết để đánh giá cho cho b. Đưa về một hàm cho b và sử dụng ước lượng cho b ở phần trước để tìm giá trị nhỏ nhất của P.
Lời giải chi tiết.
Tính toán ta tìm được hai nghiệm
Giả sử . Từ ta suy ra
Áp dụng (1) ta nhận được
Do đó giá trị nhỏ nhất của là 2016 - 1
Đạt được khi và chỉ khi
Trong tập các số phức, gọi z 1 , z 2 là hai nghiệm của phương trình z 2 - z + 2017 4 = 0 với z 2 có thành phần ảo dương. Cho số phức z thỏa mãn z - z 1 = 1 Giá trị nhỏ nhất của P = z - z 2 là
Trong tập các số phức gọi z 1 , z 2 là hai nghiệm của phương trình z 2 − z + 2017 4 = 0 với z 2 có phần ảo dương. Cho số phức z thỏa mãn z − z 1 = 1. Giá trị nhỏ nhất của P = z − z 2 là
A. 2016 − 1
B. 2017 − 1
C. 2017 − 1 2
D. 2016 − 1 2
Đáp án A
Phương trình z 2 − z + 2017 2 = 0 ⇔ 4 z 2 − 4 z + 2017 = 0
⇔ 2 z − 1 2 = 2016 i 2 ⇔ z 1 = 1 − i 2016 2 z 2 = 1 + i 2016 2
Ta có z − z 1 + z − z 2 ≥ z − z 1 − z − z 2 = z − z 2 ≥ z 1 − z 2 − z − z 1 = 2016 − 1
Vật giá trị nhỏ nhất của biểu thức P là P min = 2016 − 1
Trong tập các số phức, gọi z 1 , z 2 là hai nghiệm của phương trình z 2 - z + 2017 4 = 0 với z 2 có thành phần ảo dương. Cho số phức z thỏa mãn | z - z 1 |=1 Giá trị nhỏ nhất của P=| z - z 2 |là
A. 2016 - 1
B. 2017 - 1 2
C. 2016 - 1 2
D. 2017 - 1
Gọi z 1 và z 2 là hai nghiệm phức của phương trình z 2 + z + 1 = 0 . Tính giá trị của z 1 2017 + z 2 2017
A.
B.
C.
D.
Đáp án C
Phương pháp: Tính z 1 , z 2 và sử dụng công thức Moivre
Cách giải: Phương trình z 2 + z + 1 có ∆ = 1 - 4 = - 3 nên có 2 nghiệm
Gọi z 1 và z 2 là hai nghiệm phức của phương trình z 2 + z + 1 = 0 . Tính giá trị của z 1 2017 + z 2 2017
A. z 1 2017 + z 2 2017 = 1
B. z 1 2017 + z 2 2017 = 2
C. z 1 2017 + z 2 2017 = -1
D. z 1 2017 + z 2 2017 = -2
Gọi z 1 , z 2 là hai nghiệm phức của phương trình z 2 - z + 2. Tính z 1 2 + z 2 2
A. - 11 9
B. 8 3
C. 2 3
D. 4 3
Kí hiệu z 1 , z 2 là hai nghiệm phức của phương trình z = 2 + 2 i Gọi M,N là các điểm biểu diễn của các số phức z 1 , z 2 Tính z = 2 + 2 i với O là gốc toạ độ.
A. T = 2 2 .
B. T = 2 2
C. T = 2 2 .
D. T = 2 2
Gọi z 1 , z 2 là hai nghiệm phức của phương trình 3 z 2 - z + 2 = 0 . Tính z 1 2 + z 2 2
A. 8/3
B. 2/3
C. 4/3
D. -11/9