Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trúc Nguyễn
Xem chi tiết
Trúc Nguyễn
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
27 tháng 12 2017 lúc 7:00

a) Thay x = 4 và y = 11 vào y = 3x + b ta được:

    11 = 3.4 + b = 12 + b

=> b = 11 – 12 = -1

Ta được hàm số y = 3x – 1

- Cho x = 0 => y = -1 được A(0; -1)

- Cho x = 1 => y = 2 được B(1; 2).

Nối A, B ta được đồ thị hàm số y = 3x – 1.

Để học tốt Toán 9 | Giải bài tập Toán 9

b) Thay tọa độ điểm A(-1; 3) vào phương trình y = ax + 5 ta có:

    3 = a(-1) + 5

=> a = 5 – 3 = 2

Ta được hàm số y = 2x + 5.

- Cho x = -2 => y = 1 được C(-2; 1)

- Cho x = -1 => y = 3 được D(-1; 3)

Nối C, D ta được đồ thị hàm số y = 2x + 5.

Để học tốt Toán 9 | Giải bài tập Toán 9

Trúc Nguyễn
Xem chi tiết
Đinh Khánh Linh
Xem chi tiết
títtt
Xem chi tiết
Nguyễn Lê Phước Thịnh
11 tháng 1 2024 lúc 9:56

a: \(\lim\limits_{x\rightarrow+\infty}\dfrac{\left(2m+3\right)x-5}{x+1}\)

\(=\lim\limits_{x\rightarrow+\infty}\dfrac{2m+3-\dfrac{5}{x}}{1+\dfrac{1}{x}}=2m+3\)

\(\lim\limits_{x\rightarrow-\infty}\dfrac{\left(2m+3\right)x-5}{x+1}=\lim\limits_{x\rightarrow-\infty}\dfrac{2m+3-\dfrac{5}{x}}{1+\dfrac{1}{x}}=2m+3\)

=>Đường thẳng y=2m+3 là đường tiệm  cận ngang duy nhất của đồ thị hàm số \(y=\dfrac{\left(2m+3\right)x-5}{x+1}\)

Để đường thẳng y=2m+3 đi qua A(-1;3) thì 2m+3=3

=>2m=0

=>m=0

b: \(\lim\limits_{x\rightarrow+\infty}\dfrac{\left(m^2-3m\right)x^2-1}{x^2+1}\)

\(=\lim\limits_{x\rightarrow+\infty}\dfrac{m^2-3m-\dfrac{1}{x^2}}{1+\dfrac{1}{x^2}}=m^2-3m\)

\(\lim\limits_{x\rightarrow-\infty}\dfrac{\left(m^2-3m\right)x^2-1}{x^2+1}=\lim\limits_{x\rightarrow-\infty}\dfrac{m^2-3m-\dfrac{1}{x^2}}{1+\dfrac{1}{x^2}}=m^2-3m\)

=>Đường thẳng \(y=m^2-3m\) là tiệm cận ngang của đồ thị hàm số \(y=\dfrac{\left(m^2-3m\right)x^2-1}{x^2+1}\)

=>\(m^2-3m=-2\)

=>\(m^2-3m+2=0\)

=>(m-1)(m-2)=0

=>m=1 hoặc m=2

Khánh
13 tháng 7 2024 lúc 9:48

Đúng 

illumina
Xem chi tiết
Nguyễn Lê Phước Thịnh
15 tháng 11 2023 lúc 21:29

a: Thay x=1 và y=2 vào \(y=f\left(x\right)=ax^2\), ta được:

\(a\cdot1^2=2\)

=>a*1=2

=>a=2

=>\(y=2x^2\)

b: bảng giá trị:

x-2-1012
\(y=2x^2\)82028

 

Đồ thị:

loading...

títtt
Xem chi tiết
Nguyễn Lê Phước Thịnh
11 tháng 1 2024 lúc 9:07

a: \(\lim\limits_{x\rightarrow+\infty}\dfrac{\left(m-5\right)x-1}{2x+1}=\lim\limits_{x\rightarrow+\infty}\dfrac{\left(m-5\right)-\dfrac{1}{x}}{2+\dfrac{1}{x}}=\dfrac{m-5}{2}\)

\(\lim\limits_{x\rightarrow-\infty}\dfrac{\left(m-5\right)x-1}{2x+1}=\lim\limits_{x\rightarrow-\infty}\dfrac{m-5-\dfrac{1}{x}}{2+\dfrac{1}{x}}=\dfrac{m-5}{2}\)

=>Đường thẳng \(y=\dfrac{m-5}{2}\) là tiệm cận ngang của đồ thị hàm số \(y=\dfrac{\left(m-5\right)x-1}{2x+1}\)

Để đường tiệm cận ngang \(y=\dfrac{m-5}{2}\) đi qua M(-2;1) thì \(\dfrac{m-5}{2}=1\)

=>m-5=2

=>m=7

b: \(\lim\limits_{x\rightarrow+\infty}\dfrac{\left(2m-1\right)x^2+x-1}{x^2+1}\)

\(=\lim\limits_{x\rightarrow+\infty}\dfrac{\left(2m-1\right)+\dfrac{1}{x}-\dfrac{1}{x^2}}{1+\dfrac{1}{x^2}}=2m-1\)

\(\lim\limits_{x\rightarrow-\infty}\dfrac{\left(2m-1\right)x^2+x-1}{x^2+1}\)

\(=\lim\limits_{x\rightarrow-\infty}\dfrac{\left(2m-1\right)+\dfrac{1}{x}-\dfrac{1}{x^2}}{1+\dfrac{1}{x^2}}=2m-1\)

=>\(y=2m-1\) là đường tiệm cận ngang của đồ thị hàm số \(y=\dfrac{\left(2m-1\right)x^2+x-1}{x^2+1}\)

=>2m-1=1

=>2m=2

=>m=1

Hoàng Dũng
Xem chi tiết
Nguyễn Hoàng Anh
Xem chi tiết
Nguyễn Lê Phước Thịnh
30 tháng 11 2023 lúc 22:48

Phương trình hoành độ giao điểm là:

\(x^2-6x=-x^2-4\)

=>\(x^2-6x+x^2+4=0\)

=>\(2x^2-6x+4=0\)

=>\(x^2-3x+2=0\)

=>(x-1)(x-2)=0

=>\(\left[{}\begin{matrix}x-1=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)

Khi x=1 thì \(y=-1^2-4=-1-4=-5\)

Khi x=2 thì \(y=-2^2-4=-8\)

Vậy: A(1;-5); B(2;-8)

\(y_A+y_B=\left(-5\right)+\left(-8\right)=-13\)