Cho hàm số y = x 3 - 3 x + 1 có đồ thị là hình vẽ bên. Tìm m để phương trình | x 3 - 3 x + 1 | có 6 nghiệm thực phân biệt
Cho hàm số y=f(x) có đạo hàm trên ℝ . Đồ thị hàm số y=f'(x) như hình vẽ bên dưới
Tìm m để bất phương trình m - x ≥ 2 f x + 2 + 4 x + 3 nghiệm đúng với mọi x ∈ - 3 ; + ∞
A. m ≥ 2 f ( 0 ) - 1
B. m ≤ 2 f ( 0 ) - 1
C. m ≤ 2 f ( - 1 )
D. m ≥ 2 f ( - 1 )
Đáp án B
(1) là phương trình hoành độ giao điểm của đồ thị f'(t) và đường thẳng d : y = -t (hình vẽ)
Dựa vào đồ thị của f'(t) và đường thẳng y =-t ta có
Cho hàm số y = f (x) có đồ thị như hình vẽ bên. Tìm m để phương trình f (x) = m có bốn ngiệm phân biệt.
A. - 4 < m < - 3
B. m > - 4
C. - 4 ≤ m < - 3
D. - 4 < m ≤ - 3
Đáp án A
PT f (x) = m có bốn nghiệm phân biệt <=> - 4 < m < - 3
Cho hai hàm số đa thức bậc bốn y = f(x) và y = g(x) có đồ thị như hình vẽ bên dưới, trong đó đường đậm hơn là đồ thị hàm số y = f(x). Biết rằng hai đồ thị này tiếp xúc với nhau tại điểm có hoành độ là -3 và cắt nhau tại hai điểm nữa có hoành độ lần lượt là -1 và 3. Tìm tập hợp tất cả các giá trị thực của tham số m để bất phương trình f x ≥ g x + m nghiệm đúng với mọi x ∈ - 3 ; 3 .
A. - ∞ ; 12 - 8 3 9 .
B. 12 - 10 3 9 ; + ∞ .
C. - ∞ ; 12 - 10 3 9 .
D. 12 - 8 3 9 ; + ∞ .
Cho hàm số y=f(x) có đạo hàm liên tục trên , đồ thị hàm số y=f’(x) như hình vẽ bên dưới. Cho bất phương trình f e x + 2 3 e 3 x - e x - m ≥ 0 ; với m là tham số thực. Tìm điều kiện cần và đủ để bất phương trình f e x + 2 3 e 3 x - e x - m ≥ 0 đúng với mọi x ∈ - 2 ; 2
A. m ≤ f e + 2 3 e 3 - e
B. m ≤ f 1 - 1 3
C. m ≤ f 1 e + 2 3 e - 3 - e - 1
D. m ≤ f e 2 + 2 3 e 3 2 - e 2
Cho hàm số y = f(x) có đồ thị như hình vẽ bên. Phương trình f(x) = -3 có số nghiệm là
A. 0
B. 1
C. 2
D. 3
Cho đồ thị hàm số y = - x 3 + 3 x + 1 là hình vẽ bên. Tìm m để phương trình y = x 3 - 3 x + m = 0 có 3 nghiệm phân biệt.
A. -2<m<2
B. -2<m<3
C. -1<m<3
D. -1<m<2
Cho hai hàm số đa thức bậc bốn y = f(x) và y = g(x) có đồ thị như hình vẽ bên dưới, trong đó đường đậm hơn là đồ thị hàm số y = f(x). Biết rằng hai đồ thị này tiếp xúc với nhau tại điểm có hoành độ là -3 và cắt nhau tại hai điểm nữa có hoành độ lần lượt là -1 và 3. Tìm tập hợp tất cả các giá trị thực của tham số m để bất phương trình f(x) ≥ g(x) + m nghiệm đúng với mọi x thuộc [-3;3].
Cho hàm số y =f(x) có đồ thị như hình vẽ bên. Tìm tất cả các giá trị thực của tham số m để phương trình f(x) + 1 = m có bốn nghiệm thực phân biệt?
Cho hàm số y = f(x) có đồ thị như hình vẽ bên.
Số nghiệm của phương trình 2 f x − 1 − 3 = 0 là
A. 1.
B. 4.
C. 3.
D. 2.
Cho hàm số y = f(x) có đồ thị như hình vẽ bên.
Số nghiệm của phương trình 2 f x - 1 - 3 = 0 là:
A. 1
B. 4
C. 3
D. 2
Đáp án B
2 f x - 1 - 3 = 0 ⇔ f x - 1 = 3 2
Đồ thị hàm số y = f x - 1 có được bằng cách tình tiến đồ thị hàm số y = f(x) sang phải một đơn vị, sau đó lấy đối xứng đồ thị vừa tịnh tiến được qua trục Ox
Ta thấy f x - 1 = 3 2 là sự tương giao giữa đồ thị hàm số y = f x - 1 và đường thẳng y = 3 2 . Dựa vào đồ thị hàm số ta thấy f x - 1 = 3 2 có 4 nghiệm