Cho tam giác ABC có góc A=60 độ. Phân giác của góc B,góc C cắt nhau tại O vad lần lượt cắt AC tại M, AB tại N. Chứng minh BM+CM=Bc
cho tam giác ABC có A= 60°. phân giác của góc B, góc C cắt nhau tại O và lần lượt cắt AC tại M, AB tại N. chứng minh: BN+CM= BC
bạn ấn vào đúng 0 sẽ ra kết quả, mình giải được rồi dễ lắm
Cho tam giác ABC có góc A bằng 60 độ. Phân giác góc B,C cắt nhau tại O và lần lượt cắt AC tại M, AB tại N. Chứng minh: BN+CM=BC.
xem lại đề bài coi có cho tam giác ABC cân ko !
dau bai chac dung roi nhung qua la kho that to nghi mai k ra
Không cho cân chứng minh không được đâu ! Ai post bài lên xem lại đề đi
Bài 1 :Cho tam giác ABC có góc A = 60 độ . Phân giác của B, C cắt nhau tại O và lần lượt cắt AC tại M , AB tại N . Chứng minh BN + CM=BC
Bài 2: Cho tam giác ABC , có E thuộc AC , từ E kẻ các đường thẳng lần lượt song song với AB , BC và cắt BC , AB theo thứ tự tại D ,F . Biết AE = BF . Chứng minh : AD là phân giác góc A của tam giác ABC
( giúp mình với nhé , gấp lắm )
Bài 1:
+ ΔABC có Aˆ+ABCˆ+ACBˆ=180o. hay 60o+ABCˆ+ACBˆ=180o→ABCˆ+ACBˆ=120o
→ABCˆ+ACBˆ2=60o=ABCˆ2+ACBˆ2=B1ˆ+C1ˆ
+ Gọi CN∩BM=G
+ Δ có B1ˆ+C1ˆ+BGCˆ=180o. Hay 60o+BGCˆ=180o→BGCˆ=120o
+ Gọi GD là tia phân giác BGCˆ→G2ˆ=G3ˆ=60o
+ Tính G1ˆ=G4ˆ=G2ˆ=G3ˆ=60o
+ CM ΔNGB=ΔDGB (gcg) →BN=DB (2 cạnh tương ứng)
+CM ΔMGC=ΔDGC(gcg) →CM=CD (2 cạnh tương ứng)
+ Ta có BC=BD+CD=BN+CM (đpcm)
Bài 1:
+ ΔABC có Aˆ+ABCˆ+ACBˆ=180o. hay 60o+ABCˆ+ACBˆ=180o→ABCˆ+ACBˆ=120o
→ABCˆ+ACBˆ2=60o=ABCˆ2+ACBˆ2=B1ˆ+C1ˆ
+ Gọi CN∩BM=G
+ Δ có B1ˆ+C1ˆ+BGCˆ=180o. Hay 60o+BGCˆ=180o→BGCˆ=120o
+ Gọi GD là tia phân giác BGCˆ→G2ˆ=G3ˆ=60o
+ Tính G1ˆ=G4ˆ=G2ˆ=G3ˆ=60o
+ CM ΔNGB=ΔDGB (gcg) →BN=DB (2 cạnh tương ứng)
+CM ΔMGC=ΔDGC(gcg) →CM=CD (2 cạnh tương ứng)
+ Ta có BC=BD+CD=BN+CM (đpcm)
Cho tam giác ABC có A = 60 độ . P giác của góc B , góc C cắt AC, AB lần lượt tại M ,N . 2 tía phân giác này cắt nhau tại I .
a , CM góc MIC = góc NIB
b, CM BN + CM = BC
Cho tam giác ABC có góc A bằng 60 độ, tia phân giác của góc B cắt AC tại M, phân giác của góc C cắt AB tại N. BM cắt CN tại I. Phân giác của góc BIC cắt BC tại D. CMR:
a, BN=BD ; b, BN+CM=BC
ưeauủnvgbhrjekdlxmjckfỉoekskãdjcfủiedskxcjfr
a.Ta có:
ˆBID=12ˆBIC=12(180o−ˆBCI−ˆIBC)=12(180o−12ˆBCA−12ˆABC)=12(180o−12(ˆBCA+ˆABC)=12(180o−12(180o−ˆBAC)=60oBID^=12BIC^=12(180o−BCI^−IBC^)=12(180o−12BCA^−12ABC^)=12(180o−12(BCA^+ABC^)=12(180o−12(180o−BAC^)=60o
Lại có :
ˆNIB=ˆIBC+ˆICB
=1/2ˆABC+1/2ˆACB
=1/2(ˆABC+ˆACB)
=1/2(180o−ˆBAC)=60o
NIB^=IBC^+ICB^
=1/2ABC^+1/2ACB^
=1/2(ABC^+ACB^
=1/2(180o−BAC^)=60o
=>ˆNIB=ˆBID
=>ΔNIB=ΔDIB(g.c.g)
=>BN=BD(cmt)
b.Chứng minh tương tự câu a
→CD=CM
→BN+CM=BD+CD=BC→đpcm
Cho tam giác ABC có góc B = 60 độ Hai tia phân giác của góc A và góc C lần lượt cắt BC ở D và cắt AB ở E . Chúng cắt nhau tại O. Chứng minh OD=OE
a. Theo đề bài nên
Vì và nên
Suy ra hay
Trên cạnh AC lấy điểm K sao cho AE = AK
Hai tam giác AOE và AOK có:
AE = AK
(giả thiết)
AO là cạnh chung
Vậy
b. Ta có nên
OE = OK và
Mà góc AOE kề bù với góc DOE nên
Suy ra
Hai tam giác COK và COD có:
OC là cạnh chung
(giả thiết)
Vậy (g.c.g)
Suy ra OK = OD
Ở trên ta đã có OE = OK
Vậy OE = OK = OD
cho tam giác abc vuông tại a có b=60. tia phân giác của góc abc cắt ac tại m. mh vuông bc. cd vuông bm. a, cm ab=bh. b, cm góc bca= góc acd. c, ab và cd cắt nhau tại S. tính độ dài ab biết am =1cm
hình dễ nên tự vẽ
a, xét 2 t.giác vuông ABM và HBM có:
BM cạnh chung
\(\widehat{ABM}\)=\(\widehat{HBM}\)(gt)
=> t.giác ABM=t.giác HBM(cạnh huyền- góc nhọn)
=> AB=BH(2 cạnh tương ứng)
b, ta có: \(\widehat{ABM}\)+\(\widehat{BAM}\)+\(\widehat{AMB}\)=180 độ
=>30 độ+90 độ +\(\widehat{AMB}\)=180 độ
=>\(\widehat{AMB}\)=60 độ mà \(\widehat{AMB}\)=\(\widehat{CMD}\)(vì đối đỉnh)
=>\(\widehat{CMD}\)=60 độ
xét t.giác MCD có: \(\widehat{CMD}\)+\(\widehat{MDC}\)+\(\widehat{MCD}\)=180 độ
=>60 độ+ 90 độ+ \(\widehat{MCD}\)=180 độ
=>\(\widehat{MCD}\)=30 độ(1)
Mặt khác \(\Delta\)ABC có:\(\widehat{ABC}\)+\(\widehat{BAC}\)+\(\widehat{ACB}\)=180 độ
=>60 độ+90 độ+\(\widehat{ACB}\)=180 độ
=> \(\widehat{ACB}\)=30 độ(2)
từ (1) và (2) suy ra\(\widehat{BCA}\)=\(\widehat{ACD}\)
c,
cho tam giác abc nhọn ( ab<ac) có góc a= 60 độ.tia phân giác của góc b và góc c cắt cạnh ac.ab lần lượt tại d,e và cắt nhau tại i.
a) chứng minh id=ie.
b) chứng minh be+cd=bc
Cho tam giác ABC có góca=60 độ phân giác góc B và góc C cắt nhau tại O và cắt AC và AB lần lượt ở D và E
a, Tính góc BOC
b, Phân giác góc BOC cắt BC ở P. Chứng minh OD=OE=OP và BE+CD=BC
b/ Ta có góc BOC=120 độ
=> góc DOC=180-120=60 độ
Mà OP là tia phân giác góc BOC=>góc BOP=góc COP=60 độ
+góc DOC=góc EOB(đối đỉnh)
=> góc EOP=góc POB=60 độ
Xét tam giác BOA và tam giác BOP có:
góc EBO=góc PBO(phân giác góc B)
BO chung
Góc EOB=góc BOP(c/m trên)
=> tam giác BOE=tam giác BOP(g-c-g)
=> OE=OP(cạnh tương ứng) [1]
Xét tam giác DOC và tam giác POC có
POC=DOC=60 độ
OC chung
OCD=OCP(phân giác góc C)
=> tam giác DOC=tam giác POC(g-c-g)
=>OD=OP(cạnh tương ứng) [2]
Từ [1][2] suy ra OE=OP=OD
Từ chứng minh trên suy ra
BE=BP(cạnh tương ứng)
DC=PC(cạnh tương ứng)
=> BE+CD=BC
Phù mệt quá tik nha bà con
Hình học j mak chẳng có hình?
Nhưng thôi mk giải cho! Giải xong nhớ tik nhé!
Ta có góc A=60 độ
=> góc B+góc C=180-60=120 độ
Phân giác góc B cắt góc C tại O
=> góc BOC=180-(120/2)=120 độ
câu b từ từ nhé!