Cho tam giác ABC có góca=60 độ phân giác góc B và góc C cắt nhau tại O và cắt AC và AB lần lượt ở D và E
a, Tính góc BOC
b, Phân giác góc BOC cắt BC ở P. Chứng minh OD=OE=OP và BE+CD=BC
Cho tam giác ABC có góc A=60 độ . Các tia phân giác góc B và gocCcat nhau tại I và cắt AB ,AC lần lượt tại D;E
a) Tính góc BIC
b) chứng minh rằng:tam giác IED cân
c) chứng minh rằng :BE+CD=BC
cho tam giác ABc có góc A=60 độ. các tia phân giác của góc B và c cắt nhau tại I, cắt cạnh Ac, AB lần lượt ở d và e. Tia phaan giác của góc BIc cắt Bc ở F.
a/ Tính góc BIc
b/ chứng minh Id=Ie=IF
c/ chứng minh edF là tam giác đều
d/ chứng minh I là giao điểm các đường phân giác của hai tam giác ABc và deF
Cho tam giác ABC có Â = 60 độ. Các tia phân giác của góc B và C cắt nhau tại I, lần lượt cắt AC và AB tại D và E. Phân giác góc BIC cắt BC tại F
a) Tính số đo góc BIC
b) Chứng minh: ID=IE=IF
c) Chứng minh: Tam giác EDF là tam giác đều
d) Chứng minh: I là giao điểm của cả hai đường phân giác của hai tam giác ABC và DEF
Câu 1: Cho tam giác ABC cắt tia phân giác góc B, C cắt nhau tại I. Qua I kẻ đường thẳng song song với AB cắt AC, BC lần lượt ở D và E. Chứng minh DE=AD+BE
Câu 2:Cho tam giác ABC góc A=60, phân giác BD, CE cắt nhau ở O
Chứng minh: BC=BE+CD
Câu 3: Cho tam giác ABC phân giác trong tại B,C cắt nhau ở O, 2 phân giác góc ngoài tại B,C cắt nhau tại I
Chứng minh: 3 điểm A,O,I thẳng hàng
Cho tam giác ABC nhọn có góc A bằng 60 độ. Các đường phân giác của góc B và góc C cắt nhau tại O và cắt AC, AB thứ tự tại E,D
a) Tính \(\widehat{BOC}\)
b) Chứng minh BE + CD = BC
Cho tam giác ABC vuông cân tại A, tia phân giác của góc B và góc C cắt AC và AB lần lượt tại E và D.
a) Chứng minh BE = CD, AD = AE.
b) Gọi I là giao điểm của BE và CD, AI cắt BC tại M. Chứng minh tam giác MAC vuông cân.
c) Từ A và D vẽ các đường thẳng vuông góc với BE. Các đường này cắt BC tại K và H. Chứng minh HK = KC.
Cho tam giác ABC vuông cân tại A, tia phân giác của góc B và góc C cắt AC và AB lần lượt tại E và D.
a) Chứng minh BE = CD, AD = AE.
b) Gọi I là giao điểm của BE và CD, AI cắt BC tại M. Chứng minh tam giác MAC vuông cân.
c) Từ A và D vẽ các đường thẳng vuông góc với BE. Các đường này cắt BC tại K và H. Chứng minh HK = KC.
Bài 6. Cho tam giác ABC có các góc đều nhọn, và AB < AC. Phân giác của góc A cắt cạnh BC tại D. Vẽ BE vuông góc với AD tại E. Tia BE cắt cạnh AC tại F.
a. Chứng minh AB = AF.
b. Qua F vẽ đường thẳng song song với BC, cắt AE tại H. Lấy điểm K nằm giữa D và C sao cho FH = DK. Chứng minh DH = KF và DH // KF.
c. Chứng minh góc ABC lớn hơn góc C.