Cho biểu thức : A= ( x^3 - 3 )/(x+1)(x-3) – 2(x-3)/(x+1) – (x+3)/(x-3)
Cho biểu thức:
\(A=\left(\dfrac{2x^2+2}{x^3-1}+\dfrac{x^2-x+1}{x^4+x^2+1}-\dfrac{x^2+3}{x^3-x^2+3x-3}\right):\dfrac{1}{x-1}\left(x\ne1\right)\)
a) Rút gọn biểu thức \(A\).
b) Tìm \(x\) dể biểu thức \(A\) có giá trị nguyên.
a: \(A=\left(\dfrac{2x^2+2}{x^3-1}+\dfrac{x^2-x+1}{x^4+x^2+1}-\dfrac{x^2+3}{x^3-x^2+3x-3}\right):\dfrac{1}{x-1}\)
\(=\left(\dfrac{2x^2+2}{\left(x-1\right)\left(x^2+x+1\right)}+\dfrac{x^2-x+1}{x^4+2x^2+1-x^2}-\dfrac{x^2+3}{x^2\left(x-1\right)+3\left(x-1\right)}\right)\cdot\dfrac{x-1}{1}\)
\(=\left(\dfrac{2x^2+2}{\left(x-1\right)\left(x^2+x+1\right)}+\dfrac{\left(x^2-x+1\right)}{\left(x^2+1\right)^2-x^2}-\dfrac{x^2+3}{\left(x-1\right)\left(x^2+3\right)}\right)\cdot\dfrac{x-1}{1}\)
\(=\left(\dfrac{2x^2+3}{\left(x-1\right)\left(x^2+x+1\right)}+\dfrac{x^2-x+1}{\left(x^2+1+x\right)\left(x^2+1-x\right)}-\dfrac{1}{x-1}\right)\cdot\dfrac{x-1}{1}\)
\(=\left(\dfrac{2x^2+3}{\left(x-1\right)\left(x^2+x+1\right)}+\dfrac{1}{x^2+x+1}-\dfrac{1}{x-1}\right)\cdot\dfrac{x-1}{1}\)
\(=\dfrac{2x^2+3+x-1-x^2-x-1}{\left(x-1\right)\left(x^2+x+1\right)}\cdot\dfrac{x-1}{1}\)
\(=\dfrac{x^2+1}{x^2+x+1}\)
b: Để A là số nguyên thì \(x^2+1⋮x^2+x+1\)
=>\(x^2+x+1-x⋮x^2+x+1\)
=>\(x⋮x^2+x+1\)
=>\(x^2+x⋮x^2+x+1\)
=>\(x^2+x+1-1⋮x^2+x+1\)
=>\(-1⋮x^2+x+1\)
=>\(x^2+x+1\in\left\{1;-1\right\}\)
=>\(x^2+x+1=1\)
=>x2+x=0
=>x(x+1)=0
=>\(x\in\left\{0;-1\right\}\)
Bài 1: Cho biểu thức: A= (x^2-3/x^2-9 + 1/x-3):x/x+3
a, Rút gọn A.
b, Tìm các giá trị của x để A = 3
Bài 2: Cho biểu thức: A = (x/x^2-4 + 1/x+2 - 2/x-2) : (1- x/x+2) Với x khác 2 và -2
a, Rút gọn biểu thức,
b, Tìm các giá trị nguyên của x để A nhận giá trị nguyên.
Bài 3: Cho biểu thức A = 2x/x+3 + x+1/x-3 + 3x-11x/9-x^2, với x khác 3 , -3
a, Rút gọn biểu thức A.
b, Tính giá trị của A khi x=5
c, Tìm gái trị nguyên của x để biểu thức A có giá trị nguyên.
Bài 4: Cho biểu thức: A = (x/x^2-4 + 1/x+2 - 2/x-2) : (1- x/x+2) , với x khác 2 .-2
a, Rút gọn A.
b, Tính giá trị của A khi x = -4
c, Tìm các giá trị nguyên của x để A có giá trị là số nguyên.
Bài 1:
a: \(A=\dfrac{x^2-3+x+3}{\left(x-3\right)\left(x+3\right)}\cdot\dfrac{x+3}{x}=\dfrac{x\left(x+1\right)}{x\left(x-3\right)}=\dfrac{x+1}{x-3}\)
b: Để A=3 thì 3x-9=x+1
=>2x=10
hay x=5
Bài 2:
a: \(A=\dfrac{x+x-2-2x-4}{\left(x-2\right)\left(x+2\right)}:\dfrac{x+2-x}{x+2}\)
\(=\dfrac{-6}{x-2}\cdot\dfrac{1}{2}=\dfrac{-3}{x-2}\)
b: Để A nguyên thì \(x-2\in\left\{1;-1;3;-3\right\}\)
hay \(x\in\left\{3;1;5;-1\right\}\)
Cho biểu thức A=\(\left(\dfrac{2-3x}{x^2+2x-3}-\dfrac{x+3}{1-x}-\dfrac{x+1}{x+3}\right):\dfrac{3x+12}{x^3-1}\)
và B=\(\dfrac{x^2+x-2}{x^3-1}\)
a Rút gọn biểu thức M=A.B
b Tìm x thuộc Z để M thuộc Z
c Tìm GTLN của biểu thức N=\(A^{-1}-B\)
a. \(A=\left(\dfrac{2-3x}{x^2+2x-3}-\dfrac{x+3}{1-x}-\dfrac{x+1}{x+3}\right):\dfrac{3x+12}{x^3-1}\left(ĐKXĐ:x\ne1;x\ne-3\right)\)
\(=\left(\dfrac{2-3x}{\left(x-1\right)\left(x+3\right)}+\dfrac{x+3}{x-1}-\dfrac{x+1}{x+3}\right):\dfrac{3x+12}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\left(\dfrac{2-3x}{\left(x-1\right)\left(x+3\right)}+\dfrac{\left(x+3\right)^2}{\left(x-1\right)\left(x+3\right)}-\dfrac{\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+3\right)}\right):\dfrac{3x+12}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\dfrac{2-3x+x^2+6x+9-x^2+1}{\left(x-1\right)\left(x+3\right)}:\dfrac{3x+12}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\dfrac{3x+12}{\left(x-1\right)\left(x+3\right)}:\dfrac{3x+12}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\dfrac{3x+12}{\left(x-1\right)\left(x+3\right)}.\dfrac{\left(x-1\right)\left(x^2+x+1\right)}{3x+12}=\dfrac{x^2+x+1}{x+3}\)
\(M=A.B=\dfrac{x^2+x+1}{x+3}.\dfrac{x^2+x-2}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{x^2+x-2}{x+3}\)
b. -Để M thuộc Z thì:
\(\left(x^2+x-2\right)⋮\left(x+3\right)\)
\(\Rightarrow\left(x^2+3x-2x-6+4\right)⋮\left(x+3\right)\)
\(\Rightarrow\left[x\left(x+3\right)-2\left(x+3\right)+4\right]⋮\left(x+3\right)\)
\(\Rightarrow4⋮\left(x+3\right)\)
\(\Rightarrow x+3\in\left\{1;2;4;-1;-2;-4\right\}\)
\(\Rightarrow x\in\left\{-2;-1;1;-4;-5;-7\right\}\)
c. \(A^{-1}-B=\dfrac{x+3}{x^2+x+1}-\dfrac{x^2+x-2}{x^3-1}\)
\(=\dfrac{x+3}{x^2+x+1}-\dfrac{x^2+x-2}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\dfrac{\left(x+3\right)\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}-\dfrac{x^2+x-2}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\dfrac{x^2-x+3x-3-x^2-x+2}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\dfrac{x-1}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{1}{x^2+x+1}\)
\(=\dfrac{1}{x^2+2.\dfrac{1}{2}x+\dfrac{1}{4}+\dfrac{3}{4}}=\dfrac{1}{\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}}\le\dfrac{1}{\dfrac{3}{4}}=\dfrac{4}{3}\)
\(Max=\dfrac{4}{3}\Leftrightarrow x=\dfrac{-1}{2}\)
cho các biểu thức: A=\(\dfrac{x-\sqrt[3]{x}}{x-1}\),B=\(\dfrac{1}{\sqrt[3]{x}-1}+\dfrac{1}{\sqrt[3]{x^2}+\sqrt[3]{x}+1}\);vs x\(\ne\)1
rút gọn biểu thức M=A+B
Ta có: M=A+B
\(=\dfrac{x-\sqrt[3]{x}}{x-1}+\dfrac{1}{\sqrt[3]{x}-1}+\dfrac{1}{\sqrt[3]{x^2}+\sqrt[3]{x}+1}\)
\(=\dfrac{x-\sqrt[3]{x}}{\left(\sqrt[3]{x}-1\right)\left(\sqrt[3]{x^2}+\sqrt[3]{x}+1\right)}+\dfrac{\sqrt[3]{x^2}+\sqrt[3]{x}+1+\sqrt[3]{x}-1}{\left(\sqrt[3]{x}-1\right)\left(\sqrt[3]{x^2}+\sqrt[3]{x}+1\right)}\)
\(=\dfrac{x+\sqrt[3]{x}+\sqrt[3]{x^2}}{\left(\sqrt[3]{x}-1\right)\left(\sqrt[3]{x^2}+\sqrt[3]{x}+1\right)}\)
\(=\dfrac{\sqrt[3]{x}}{\sqrt[3]{x}-1}\)
Cho hai biểu thức A = \(\dfrac{x^2+x}{3\left(x+3\right)}\) và B = \(\dfrac{1}{x+1}-\dfrac{1}{1-x}-\dfrac{3-x}{x^2-1}\) với x ≠ -3; -1, 1
a) Tính giá trị của biểu thức A khi | x + 4 | = 1
b) Rút gọn biểu thức B
c) Tìm các giá trị của x để B.A <1
a: Ta có: |x+4|=1
=>x+4=1 hoặc x+4=-1
=>x=-3(loại) hoặc x=-5
Khi x=-5 thì \(A=\dfrac{\left(-5\right)^2-5}{3\left(-5+3\right)}=\dfrac{20}{3\cdot\left(-2\right)}=\dfrac{-10}{3}\)
b: \(B=\dfrac{x-1+x+1-3+x}{\left(x-1\right)\left(x+1\right)}=\dfrac{3x-3}{\left(x-1\right)\left(x+1\right)}=\dfrac{3}{x+1}\)
a,cho biểu thức A=3*x^2*y^3-1/2*x^3*y^2 và B=25*x^2*y^2. Không thực hiện phép tính chứng tỏ rằng đa thức A chia hết cho đơn thức B. b) Hãy thu gọn Q=(x^3-x^2):(x-1)
c) Tính giá trị của biểu thức Q=(x^3-x^2):(x-1) tại x=-1
Cho hai biểu thức A = (x + 3)/(sqrt(x) + 3) và B = ((x + 3sqrt(x) - 2)/(x - 9) - 1/(sqrt(x) + 3)) * (sqrt(x) - 3)/(sqrt(x) + 1) với x >= 0 x ne9 a) Tình già trị của biểu thức A khi x = 121 b) Chứng minh B = (sqrt(x) + 1)/(sqrt(x) + 3) c) Dat P = A/B Tìm giá trị nhỏ nhất của biểu thức P.
a: Khi x=121 thì \(A=\dfrac{121+3}{11+3}=\dfrac{124}{14}=\dfrac{62}{7}\)
b: \(B=\left(\dfrac{x+3\sqrt{x}-2}{x-9}-\dfrac{1}{\sqrt{x}+3}\right)\cdot\dfrac{\sqrt{x}-3}{\sqrt{x}+1}\)
\(=\dfrac{x+3\sqrt{x}-2-\sqrt{x}+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\cdot\dfrac{\sqrt{x}-3}{\sqrt{x}+1}\)
\(=\dfrac{x+2\sqrt{x}+1}{\sqrt{x}+1}\cdot\dfrac{1}{\sqrt{x}+3}=\dfrac{\sqrt{x}+1}{\sqrt{x}+3}\)
c: P=A:B
\(=\dfrac{x+3}{\sqrt{x}+3}:\dfrac{\sqrt{x}+1}{\sqrt{x}+3}=\dfrac{x+3}{\sqrt{x}+1}\)
\(=\dfrac{x-1+4}{\sqrt{x}+1}=\sqrt{x}-1+\dfrac{4}{\sqrt{x}+1}\)
\(=\sqrt{x}+1+\dfrac{4}{\sqrt{x}+1}-2>=2\cdot\sqrt{\left(\sqrt{x}+1\right)\cdot\dfrac{4}{\sqrt{x}+1}}-2=2\cdot2-2=2\)
Dấu = xảy ra khi \(\left(\sqrt{x}+1\right)^2=4\)
=>\(\sqrt{x}+1=2\)
=>x=1(nhận)
cho biểu thức A=3*x^2*y^3-1/2*x^3*y^2 và B=25*x^2*y^2. Không thực hiện phép tính chứng tỏ rằng đa thức A chia hết cho đơn thức B.
b) Hãy thu gọn Q= (x^3-x^2):(x-1)
c) Tính giá trị của biểu thức Q= (x^3-x^2):(x-1) tại x=-1
Cho 2 biểu thức: A = x - 3/ x^2 - x + 1 B = (3x + 6/ x^2 - 9 - 2/ x - 3) : 1/ x +3 a) Chứng minh: B = x/ x - 3 b) Tính P = A.B
a: \(B=\left(\dfrac{3x+6}{\left(x-3\right)\left(x+3\right)}-\dfrac{2}{x-3}\right):\dfrac{1}{x+3}\)
\(=\dfrac{3x+6-2x-6}{\left(x-3\right)\left(x+3\right)}\cdot\dfrac{x+3}{1}=\dfrac{x}{x-3}\)
b: \(P=A\cdot B=\dfrac{x}{x-3}\cdot\dfrac{x-3}{x^2-x+1}=\dfrac{x}{x^2-x+1}\)