Tìm các số thực m để hàm số y = m + 2 x 3 + 3 x 2 + m x - 5 có cực trị.
A. m ≠ - 2 hoặc -3<m<1
B. -3<m<1
C. m<-3 hoặc m>1
D. -2<m<1
Câu 1 : Tìm tất cả các giá trị của tham số thực m để hàm số \(y=mx^3-2mx^2+\left(m-2\right)x+1\) không có cực trị
Câu 2: Tìm tất cả các giá trị thực của tham số m để hàm số \(y=\left(m-1\right)x^4-2\left(m-3\right)x^2+1\) không có cực đại
Câu 3 Để đồ thị hàm số \(y=-x^4-\left(m-3\right)x^2+m+1\) có điểm cực đạt mà không có điểm cực tiểu thì tất cả giá trị thực của tham số m là
Câu 4 Cho hàm số \(y=x^4-2mx^2+m\) .Tìm tất cả các giá trị thực của m để hàm số có 3 cực trị
Tìm các số thực m để hàm số y= (m+2)x^3 +3x^2 +mx-5 có cực trị.
A. m ≠ 2 - 3 < m < 1
B. -3 < m < 1
C. m < - 3 m > 1
D. -2 < m < 1
Cho hàm số y = x 3 - 6 x 2 + 3 ( m + 2 ) x - m - 6 . Tìm tất cả các giá trị thực của m để hàm số có 2 cực trị cùng dấu
A. - 23 4 < m < 2 .
B. - 15 4 < m < 2 .
C. - 21 4 < m < 2 .
D. - 17 4 < m < 2 .
Chọn D
Hàm số có 2 điểm cực trị x 1 , x 2
Chia y cho y’ ta được :
Điểm cực trị tương ứng :
Với x 1 + x 2 = 4 x 1 x 2 = m + 2 nên y 1 y 2 = ( m - 2 ) 2 ( 4 m + 17 )
Hai cực trị cùng dấu ⇔ y 1 y 2 > 0
Kết hợp đk : - 17 4 < m < 2
3.a)Vẽ đồ thị hàm số y=-x+2 b) tìm các số thực m để đường thẳng y=(m mũ 2 -2 ) x+3 song song với đường thẳng y=2x-m +1
b: Để hai đường thẳng song song thì
\(\left\{{}\begin{matrix}m^2-2=2\\1-m< >3\end{matrix}\right.\Leftrightarrow m=2\)
Cho hàm số y = (m-2)x + m + 3
1. Tìm điều kiện của m để hàm số luôn nghịch biến
2. Tìm m để đồ thị hàm số cắt trục hoành tại điểm có hoành độ bằng 3
3. Tìm m để đồ thị hàm số trên và các đồ thị hàm số y= -x+2; y = 2x-1 đồng quy
1. hàm số nghịch biến khi
\(a< 0\\ \Leftrightarrow m-2< 0\\ \Leftrightarrow m< 2\)
2. \(y=\left(m-2\right)x+m+3\cap Ox,tại,x=3\)
\(\Rightarrow y=0\)
Có: \(0=\left(m-2\right)3+m+3\\ \Leftrightarrow0=4m-4\\ \Leftrightarrow m=\dfrac{3}{4}\)
3. pt hoành độ giao điểm của
\(y=-x+2,và,y=2x-1\) là
\(-x+2=2x-1\\ \Leftrightarrow3x=3\Leftrightarrow x=1\Rightarrow y=1\)
A(1,1)
3 đt đồng quy \(\Rightarrow A\in y=\left(m-2\right)x+m+3\\ \Rightarrow1=\left(m-2\right)1+m+3\\ \Leftrightarrow2m=0\\ \Leftrightarrow m=0\)
Cho hàm số y=(m-2)x+m+3
a) Tìm điều kiện của m để hàm số luôn nghịch biến
b)Tìm m để đồ thị hàm số cắt trục hoành tại điểm có hoành độ là 3
c)Tìm m để đồ thị các hàm số y=-x+2;y=2x-1 và y=(m-2)x+m+3 đồng quy
a: Để hàm số y=(m-2)x+m+3 nghịch biến trên R thì m-2<0
=>m<2
b: Thay x=3 và y=0 vào y=(m-2)x+m+3, ta được:
\(3\left(m-2\right)+m+3=0\)
=>3m-6+m+3=0
=>4m-3=0
=>4m=3
=>\(m=\dfrac{3}{4}\)
c: Tọa độ giao điểm của hai đường thẳng y=-x+2 và y=2x-1 là:
\(\left\{{}\begin{matrix}2x-1=-x+2\\y=-x+2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}3x=3\\y=-x+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1+1=0\end{matrix}\right.\)
Thay x=1 và y=0 vào y=(m-2)x+m+3, ta được:
\(1\left(m-2\right)+m+3=0\)
=>m-2+m+3=0
=>2m+1=0
=>2m=-1
=>\(m=-\dfrac{1}{2}\)
Câu 4: Tìm các giá trị thực của tham số m để hàm số\(y=\dfrac{1}{3}x^3-mx^2+\left(m^2-4\right)x+3\) đạt cực đạt tại x= 3
Câu 6: Tìm các giá trị thực của tham số m để hàm số \(y=\dfrac{1}{3}x^3-mx^2+\left(m^2-4\right)x+3\) đạt cực đạt tại x=3
Cho hàm số \(y=2x^3+3\left(m-1\right)x^2+6\left(m-2\right)x-1\) với m là tham số thực. Tìm tất cả các giá trị của m để hàm số có điểm cực đại và cực tiểu nằm trong khoảng (-2;3)