Cho hình chóp S,ABC có SA vuông góc với đáy, S A = 2 B C và B A C ^ = 120 ∘ . Hình chiếu vuông góc của A lên các đoạn SB và SC lần lượt là M và N. Góc giữa hai mặt phẳng A B C v à A M N bằng
A. 45 °
B. 60 °
C. 15 °
D. 30 °
Cho hình chóp S. ABCD có đáy ABCD là hình vuông cạnh a, SA vuông góc với đáy, SA = a 2 . Một mặt phẳng đi qua A vuông góc với SC cắt SB, SD, SC lần lượt tại B', D', C'. Thể tích khối chóp S. AB'C'D' là:
A. V = 2 a 3 3 9
B. V = 2 a 3 2 3
C. V = a 3 2 9
D. V = 2 a 3 3 3
Chọn C
Dựa vào giả thiết ta có B', C', D' lần lượt là hình chiếu của A lên SB, SC, SD.
Tam giác SAC vuông cân tại A nên C' là trung điểm của SC.
Trong tam giác vuông SAB' ta có:
Đề thiếu dữ liệu để xác định độ dài SA rồi bạn
Câu 1. Cho hình chóp S ABC . có SA vuông góc với ABC và đáy ABC đều cạnh a. Biết SA=3a/2.Gọi H là trung điểm của BC.
a. Tính góc giữa hai mặt phẳng SBC và ABC ?
b. Tính diện tích của tam giác ABC từ đó suy ra diện tích tam giác SBC ?
c. Chứng minh SBC vuông góc với SAH
Câu 2. Cho hình chóp tam giác đều S ABC . có cạnh đáy bằng a và đường cao SH bằng cạnh đáy. Tính số đo góc hợp bởi mặt bên và mặt đáy
cho hình chóp S.ABCD có đáy ABCD là hình vuông, SA vuông góc với đáy SA=a căn 3 a)cm SAC vuông góc với SBD b)gọi AH là đg cao của tam giác SAB . cmr AK vuông góc với (SBC) c) tính góc giữa đg thẳng SC và mặt đáy ABC d) tính khoảng cách từ a đến mp (SCD)
a: BD vuông góc AC
BD vuông góc SA
=>BD vuông góc (SAC)
=>(SBD) vuông góc (SAC)
b: BC vuông góc AB
BC vuông góc SA
=>BC vuông góc (SAB)
=>BC vuông góc AK
mà AK vuông góc SB
nên AK vuông góc (SBC)
Hình chóp A'.BC'D có đáy ABC là tam giác vuông tại a, SA vuông góc với mặt phẳng (ABC), SA = a, AB = b, AC = c. Tính bán kính R của mặt cầu đi qua các điểm A, B, C và S ?
A. R = 2 ( a + b + c ) 3
B. R = 2 a 2 + b 2 + c 2
C. R = 1 2 a 2 + b 2 + c 2
D. R = a 2 + b 2 + c 2
Đáp án C
Hướng dẫn giải:
Gọi H, K lần lượt là trung điểm của BC và SA.
Dựng đường thẳng d đi qua H và vuông góc với (ABC). Khi đó d//SA.
Trong mặt phẳng (SAH) dựng đường thằng d 1 đi qua K và vuông góc với SA.
Khi đó, d 1 //AH.
Gọi I = d ∩ d 1 tại. Ta có được IA = IB = IC = IS.
Khi đó mặt cầu cần tìm ở đề bài đi qua các điểm A, B, C, S có tâm là I và bán kính là R = IA.
Dễ thấy A H = 1 2 B C = b 2 + c 2 2
và I H = 1 2 S A = a 2 .
Trong ∆ I A H có
Vậy là ta hoàn thành xong bài toán.
Cho hình chóp S. ABC có SA vuông góc với đáy. Tam giác ABC vuông cân tại B, biết SA= AC = 2a. Tính thể tích khối chóp S. ABC
A. 2 a 3 3
B. a 3 3
C. 2 2 a 3 3
D. 4 a 3 3
Cho hình chóp S.ABCD có đáy ABCD là hình vuông , SA vuông góc (ABCD) . Kẻ AH vuông góc SB, AK vuông góc SD.
a. CMR : SC vuông góc (AHK)
b. Thiết diện cắt bởi (AHK) giao với hình chóp là hình gì
c. Tính S thiết diện biết đáy bằng a , SA= a căn 2
Cho hình chóp S.ABC có đáy là tam giác vuông cận tại B , AB = a . Cạnh bên SA vuông góc với mặt phẳng (ABC) và SC hợp với đáy một góc bằng 60 0 . Gọi (S) là mặt cầu ngoại tiếp khối chóp S.ABC. Tính thể tích khối cầu (S).
A. 8 2 πa 3 3
B. 4 2 πa 3 3
C. 2 2 πa 3 3
D. 2 πa 3 3
Đáp án A
Gọi M là trung điểm của AC. Tam giác ABC vuông tại B, do đó M là tâm đường tròn ngoại tiếp tam giác ABC.
Gọi O là trung điểm của AC, suy ra OM // SA. Mà
Cho hình chóp S(ABCD) đáy là hình vuông cạnh a SA vuông góc (ABCD) SA= a√2 a, chứng minh BD vuông góc với (SAC) b, tính góc a giữa đường SC và mặt đáy
Ta có:
\(\left\{{}\begin{matrix}SA\perp\left(ABCD\right)\Rightarrow SA\perp BD\\AC\perp BD\left(\text{hai đường chéo hình vuông}\right)\end{matrix}\right.\) \(\Rightarrow BD\perp\left(SAC\right)\)
b.
Do \(SA\perp\left(ABCD\right)\Rightarrow AC\) là hình chiếu vuông góc của SC lên (ABCD)
\(\Rightarrow\widehat{SCA}\) là góc giữa SC và (ABCD)
\(AC=\sqrt{AB^2+BC^2}=a\sqrt{2}\)
\(tan\widehat{SCA}=\dfrac{SA}{AC}=\dfrac{a\sqrt{2}}{a\sqrt{2}}=1\)
\(\Rightarrow\widehat{SCA}=45^0\)
Cho hình chóp S. ABCD có đáy ABCD là hình thoi cạnh a A B C ^ = 60 0 , cạnh bên SA vuông góc với đáy SA = a 3 Tính thể tích của khối chóp S. ABCD
A. a 3 4
B. a 3 3 6
C. a 3 2
D. a 3 3 3