Với n là số tự nhiên, chứng minh đẳng thức:
n + 1 2 + n 2 = n + 1 2 - n 2
Viết đẳng thức trên khi n là 1, 2, 3, 4, 5, 6, 7
Chứng minh đẳng thức: n + 1 - n = 1 n + 1 + n với n là số tự nhiên
Vế trái bằng vế phải nên đẳng thức được chứng minh.
Với n là số tự nhiên,chứng minh đẳng thức:
\(\sqrt{\left(n+1\right)^2}+\sqrt{n^2}=\left(n+1\right)^2-n^2\)
Viết đẳng thức khi n là 1,2,3,4,5,6,7.
\(\sqrt{\left(n+1\right)^2}+\sqrt{n^2}=\left(n+1\right)+n=2n+1=\left(n+1-n\right)\left(n+1+n\right)=\left(n+1\right)^2-n^2\)
Với n là số tự nhiên, chứng minh:
n + 1 - n 2 = 2 n + 1 2 - 2 n + 1 2 - 1
Viết đẳng thức trên khi n bằng 1, 2, 3, 4
Ta có:
Vế trái bằng vế phải nên đẳng thức được chứng minh.
* Với n = 1, ta có: 2 - 1 2 = 9 - 8
* Với n = 2, ta có: 3 - 2 2 = 25 - 24
* Với n = 3, ta có: 4 - 3 2 = 49 - 48
* Với n = 4, ta có: 5 - 4 2 = 81 - 80
Chứng minh đẳng thức :
\(\sqrt{n+1}-\sqrt{n}=\dfrac{1}{\sqrt{n+1}+\sqrt{n}}\) với n là số tự nhiên
Ta có: \(\left(\sqrt{n+1}-\sqrt{n}\right)\left(\sqrt{n+1}+\sqrt{n}\right)=\left(\sqrt{n+1}\right)^2-\left(\sqrt{n}\right)^2=n+1-n=1\) \(\Leftrightarrow\) \(\sqrt{n+1}-\sqrt{n}=\dfrac{1}{\sqrt{n+1}+\sqrt{n}}\) với n là số tự nhiên
Chứng minh rằng với mọi số tự nhiên n ≥ 2 , ta có bất đẳng thức: 3 n > 3 n + 1
Chứng minh: 3n > 3n + 1 (1)
+ Với n = 2 thì (1) ⇔ 9 > 7 (luôn đúng).
+ Giả sử (1) đúng với n = k ≥ 2, tức là 3k > 3k + 1.
Ta chứng minh đúng với n= k+1 tức là chứng minh: 3k+ 1 > 3(k+1) + 1
Thật vậy, ta có:
3k + 1 = 3.3k > 3.(3k + 1) (Vì 3k > 3k + 1 theo giả sử)
= 9k + 3
= 3k + 3 + 6k
= 3.(k + 1) + 6k
> 3(k + 1) + 1.( vì k ≥ 2 nên 6k ≥ 12> 1)
⇒ (1) đúng với n = k + 1.
Vậy 3n > 3n + 1 đúng với mọi n ≥ 2.
Chứng Minh Đẳng Thức : \(\sqrt{n+1}-\sqrt{n}=\frac{1}{\sqrt{n+1}+\sqrt{n}}\) với n là số tự nhiên .
\(\sqrt{n+1}-\sqrt{n}=\frac{1}{\sqrt{n+1}+\sqrt{n}}\)
VP = \(\frac{1}{\sqrt{n+1}+\sqrt{n}}\)
= \(\frac{\sqrt{n+1}-\sqrt{n}}{\left(\sqrt{n+1}+\sqrt{n}\right)\left(\sqrt{n+1}-\sqrt{n}\right)}\)
= \(\frac{\sqrt{n+1}-\sqrt{n}}{\left(\sqrt{n+1}\right)^2-\left(\sqrt{n}\right)^2}\)
= \(\frac{\sqrt{n+1}-\sqrt{n}}{n+1-n}\)
= \(\sqrt{n+1}-\sqrt{n}\)
= VT
Vậy đẳng thức được chứng minh
cách khác nhé:
Xét: \(\left(\sqrt{n+1}-\sqrt{n}\right)\left(\sqrt{n+1}+\sqrt{n}\right)\)
\(=\left(\sqrt{n+1}\right)^2-\left(\sqrt{n}\right)^2\)
\(=n+1-n=1\)
\(\Rightarrow\)\(\sqrt{n+1}-\sqrt{n}=\frac{1}{\sqrt{n+1}+\sqrt{n}}\) (đpcm)
Chứng minh rằng với mọi số tự nhiên n ≥ 2 , ta có các bất đẳng thức: 2 n + 1 > 2 n + 3
2n + 1 > 2n + 3 (2)
+ Với n = 2 thì (2) ⇔ 8 > 7 (luôn đúng).
+ Giả sử (2) đúng khi n = k ≥ 2, nghĩa là 2k+1 > 2k + 3.
Ta chứng minh đúng với n= k+ 1 tức là chứng minh: 2k+2 > 2(k+ 1)+ 3
Thật vậy, ta có:
2k + 2 = 2.2k + 1
> 2.(2k + 3) = 4k + 6 = 2k + 2 + 2k + 4.
> 2k + 2 + 3 = 2.(k + 1) + 3 ( Vì 2k + 4 >3 với mọi k ≥ 2)
⇒ (2) đúng với n = k + 1.
Vậy 2n + 1 > 2n + 3 với mọi n ≥ 2.
Với n là số tự nhiên, chứng minh đẳng thức :
\(\sqrt{\left(n+1\right)^2}+\sqrt{n^2}=\left(n+1\right)^2-n^2\)
Viết đẳng thức trên khi n là 1, 2, 3, 4, 5, 6, 7
Chứng minh đẳng thức:
\(\sqrt{n+1}\)-\(\sqrt{n}\)= \(\frac{1}{\sqrt{n+1}+\sqrt{n}}\) với n là số tự nhiên
\(\sqrt{n+1}-\sqrt{n}=\frac{\left(\sqrt{n+1}-\sqrt{n}\right)\left(\sqrt{n+1}+\sqrt{n}\right)}{\sqrt{n+1}+\sqrt{n}}=\frac{\left(n+1\right)-n}{\sqrt{n+1}+\sqrt{n}}=\frac{1}{\sqrt{n+1}+\sqrt{n}}\) (đpcm)