Tìm các số phức z thỏa mãn z 2 + 3 ( 1 - 2 i ) z - 4 + 6 i = 0
Cho số phức z thỏa mãn điều kiện ( 3 + 2 i ) z + ( 2 - i ) 2 = 4 + i . Tìm phần ảo của số phức w = ( 1 + + z ) z ¯ .
A. -2
B. 0.
C. -1
D. 1
Cho số phức z thỏa mãn điều kiện ( 3 + 2 i ) z + ( 2 - i ) 2 = 4 + i . Tìm phần ảo của số phức w = ( 1 + z ) z ¯ .
Tìm số phức z thỏa mãn: ( 2 + i ) z = ( 3 - 2 i ) z ¯ - 4 ( 1 - i )
Câu 1 : Cho số phức \(z\) thỏa mãn \(z\) + ( 2 - i )\(\overline{z}\) = 3 - 5i. Môđun của số phức w = \(z \) - i bằng bao nhiêu ?
Câu 2 : Cho số phức \(z\) = a + bi, (a,b ∈ R ) thỏa mãn ( 3 + 2i )\(z\) + ( 2 - i )2 = 4 + i. Tính P = a - b
Số phức z thỏa mãn z^6-z^5+z^4-z^3+z^2-z+1=0. Tìm phần thực của w=z(z^2-z+1).
Trong tập hợp các số phức z thỏa mãn: z + 2 - i z + 1 - i = 2 Tìm môđun lớn nhất của số phức z +i
A. 2 + 2
B. 3 + 2
C. 3 - 2
D. 2 - 2
Xét các số phức w,z thỏa mãn | w + i | = 3 5 5 và 5 w = ( 2 + i ) ( z - 4 ) . Tìm giá trị lớn nhất của biểu thức P = | z - 2 i | + | z - 6 - 2 i |
A. 7.
B . 2 53 .
C . 2 58 .
D . 4 13 .
Cho số phức z thỏa mãn \(z^6-z^5+z^4-z^3+z^2-z+1=0\)Tìm phần thực của \(w=z\left(z^2-z+1\right)\)
Tìm tất cả các số phức \(z\) thỏa mãn điều kiện:
\(\left|iz-1-3i\right|.\left|\overline{z}+1+i\right|=\left|z^2+\left(-6+2i\right)z+8-6i\right|\) và \(\dfrac{z-3}{z+2}\) là số thuần ảo.
Xét các số phức z thỏa mãn z + 1 - i + z - 3 + i = 2 5 . Tìm giá trị nhỏ nhất của P = z + 2 + 4 i .
A. P m i n = 11 5 5
B. P m i n = 2 + 2
C. P m i n = 5
D. P m i n = 5 - 2