Tìm số phức z biết z 2 - ( 3 + 2 i ) z + 1 + 3 i = 0
Cho số phức z thỏa mãn điều kiện ( 3 + 2 i ) z + ( 2 - i ) 2 = 4 + i . Tìm phần ảo của số phức w = ( 1 + + z ) z ¯ .
A. -2
B. 0.
C. -1
D. 1
Cho số phức z thỏa mãn điều kiện ( 3 + 2 i ) z + ( 2 - i ) 2 = 4 + i . Tìm phần ảo của số phức w = ( 1 + z ) z ¯ .
Tìm số phức z thoả (2+i)^2 (1-i)z = 4 -3i +(3+i) z
\(\Leftrightarrow\left(i^2+4i+4\right)\left(1-i\right)z=4-3i+\left(3+i\right)z\)
\(\Leftrightarrow\left(4i+3\right)\left(1-i\right)z-\left(3+i\right)z=4-3i\) (do \(i^2=-1\Rightarrow i^2+4=3\))
\(\Leftrightarrow\left(4i-4i^2+3-3i\right)z-\left(3+i\right)z=4-3i\)
\(\Leftrightarrow\left(7+i\right)z-\left(3+i\right)z=4-3i\)
\(\Leftrightarrow4z=4-3i\)
\(\Leftrightarrow z=1-\dfrac{3}{4}i\)
Tìm số phức z thỏa mãn: ( 2 + i ) z = ( 3 - 2 i ) z ¯ - 4 ( 1 - i )
bài 1 a/tìm số phức z biết \(\left|z\right|+z=3+4i\)
b/ cho các số phức z1 z2 thỏa mãn z1+3z1z2=(-1+i)z2 và 2z1-z2=3+2i.tìm modun của số phức w=\(\frac{z1}{z2}\)+z1+z2
bài 2 a/giải pt trên tập số phức 2\(z^4\)-7\(z^3\)+9\(z^2\)+2=0
b/cho số phức z=1+i\(\sqrt{3}\).Hãy tìm dạng lượng giác của các số phức z , \(\overline{z}\) , -z,\(\frac{1}{z}\)
a) tìm phần ảo của số phức z2 , biết (1+i)z= 1/z
b) tìm mô-đun của số phức z biết 1/z = 1/2 + 1/2i
c) i + i2+ i3 +...... i100
d) 1+(1+i) +(1+ i)^2+(1+i)^3+..... (1+i)^20
a/\(\left(1+i\right)z=\frac{1}{z}\Leftrightarrow z^2\left(1+i\right)=1\Rightarrow z^2=\frac{1}{1+i}=\frac{1}{2}-\frac{1}{2}i\)
\(\Rightarrow\) Phần ảo là \(-\frac{1}{2}\)
b/\(\frac{1}{z}=\frac{1}{2}+\frac{1}{2}i\Rightarrow z=\frac{2}{1+i}\Rightarrow z=1-i\)
Phần ảo là -1
c/ Áp dụng công thức tổng CSN với \(u_1=i\) ; \(q=i\); \(n=100\)
\(i+i^2+...+i^{100}=i.\frac{i^{101}-1}{i-1}=\frac{i^{102}-i}{i-1}=\frac{\left(i^2\right)^{51}-i}{i-1}=\frac{-1-i}{i-1}=i\)
d/ Tương tự câu trên:
\(1+\left(1+i\right)+...+\left(1+i\right)^{20}=1+\left(1+i\right).\frac{\left(1+i\right)^{21}-1}{1+i-1}=-2048+i\)
Câu 1 : Cho số phức \(z\) thỏa mãn \(z\) + ( 2 - i )\(\overline{z}\) = 3 - 5i. Môđun của số phức w = \(z \) - i bằng bao nhiêu ?
Câu 2 : Cho số phức \(z\) = a + bi, (a,b ∈ R ) thỏa mãn ( 3 + 2i )\(z\) + ( 2 - i )2 = 4 + i. Tính P = a - b
Cho số phức z thỏa mãn |z|=2. Biết rằng tập hợp các điểm biểu diễn số phức w=3-2i+(2-i)z là một đường tròn. Tìm tọa độ tâm I của đường tròn đó?
A.I(3;-2)
B. I(-3;2)
C.I(3;2)
D.I(-3;-2)
Tìm phần ảo của số phức z, biết (1-i)z=3+i ?
A.-1
B.1
C.-2
D.2
Tìm phần ảo của số phức z, biết ( 1 - i ) z = 3 + i .