Tìm A biết rằng A=a/b+c=b/a+c=c/a+b
1. So sánh các số a, b và c, biết rằng a/b = b/c = c/a.
2. Tìm các số a, b, c, d, biết rằng:
a : b : c : d = 2 : 3 : 4 : 5 và a + b + c + d = -42.
3. Tìm các số a, b, c, biết rằng:
a/2 = b/3 , b/5 = c/4 và a - b + c = -49.
4. Tìm các số a, b, c, biết rằng:
a/2 = b/3 = c/4 và a + 2b - 3c = -20.
2.Giải:
Theo bài ra ta có:
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{d}{5}\) và a + b + c + d = -42
Theo tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{d}{5}=\frac{a+b+c+d}{2+3+4+5}=\frac{-42}{14}=-3\)
+) \(\frac{a}{2}=-3\Rightarrow a=-6\)
+) \(\frac{b}{3}=-3\Rightarrow b=-9\)
+) \(\frac{c}{4}=-3\Rightarrow c=-12\)
+) \(\frac{d}{5}=-3\Rightarrow d=-15\)
Vậy a = -6
b = -9
c = -12
d = -15
Bài 3:
Ta có:\(\frac{a}{2}=\frac{b}{3}\Leftrightarrow\frac{a}{10}=\frac{b}{15}\); \(\frac{b}{5}=\frac{c}{4}\Leftrightarrow\frac{b}{15}=\frac{c}{12}\)
\(\Rightarrow\frac{a}{10}=\frac{b}{15}=\frac{c}{12}\)
Áp dụng tc dãy tỉ:
\(\frac{a}{10}=\frac{b}{15}=\frac{c}{20}=\frac{a+b+c}{10+15+12}=\frac{-49}{37}\)
Với \(\frac{a}{10}=\frac{-49}{37}\Rightarrow a=10\cdot\frac{-49}{37}=\frac{-490}{37}\)
Với \(\frac{b}{15}=\frac{-49}{37}\Rightarrow b=15\cdot\frac{-49}{37}=\frac{-735}{37}\)
Với \(\frac{c}{12}=\frac{-49}{37}\Rightarrow c=12\cdot\frac{-49}{37}=\frac{-588}{37}\)
Bài 2:
a : b : c : d = 2 : 3 : 4 : 5 \(\Rightarrow\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{d}{5}\)
Áp dụng tc dãy tỉ:
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{d}{5}=\frac{a+b+c+d}{2+3+4+5}=\frac{-42}{14}=-3\)
Với \(\frac{a}{2}=-3\Rightarrow a=-6\)
Với \(\frac{b}{3}=-6\Rightarrow b=-18\)
Với \(\frac{c}{4}=-6\Rightarrow c=-24\)
Với \(\frac{d}{5}=-6\Rightarrow d=-30\)
a, Tìm các số nguyên a,b,c biết rằng: a + b =11, b + c = 3, c + a = 2.
b, Tìm các số nguyên a,b,c,d biết rằng: a + b + c + d = 1 ; a + c + d = 2; a + b + d =3; a + b + c = 4
Theo bài ra ta có : \(a+b=11\Rightarrow a=11-b\)(1) ; \(b+c=3\Rightarrow c=3-b\)(2)
\(\Leftrightarrow c+a=2\)hay \(11-b+3-b=0\Leftrightarrow14-2b=0\Leftrightarrow b=7\)
Thay lại vào (1) ; (2) ta có :
\(\Leftrightarrow a=11-b=11-7=4\)
\(\Leftrightarrow c=3-b=3-7=-4\)
Do a ; b ; c \(\in Z\)Vậy a ; b ; c = 4 ; 7 ; -4 ( thỏa mãn điều kiện )
a) Tìm hai số a,b biết rằng 2a = 5b và 3a + 4b = 46
b) Tìm hai số a,b,c biết rằng a : b : c = 2 : 4 : 5 và a + b – c = 3
a) Vì \(2a=5b\) nên \(\dfrac{a}{5}=\dfrac{b}{2}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{a}{5}=\dfrac{b}{2}=\dfrac{3a+4b}{3.5+2.4}=\dfrac{46}{23}=2\)
\( \Rightarrow a=2.5=10;\\b=2.2=4\)
Vậy \(a = 10 ; b = 4\)
b) Vì a : b : c = 2 : 4 : 5
\( \Rightarrow \dfrac{a}{2} = \dfrac{b}{4} = \dfrac{c}{5}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\( \Rightarrow \dfrac{a}{2} = \dfrac{b}{4} = \dfrac{c}{5}= \dfrac{{a + b - c}}{{2 + 4 - 5}}= \dfrac{3}{1}=3\)
\( \Rightarrow a = 3.2=6;\\b = 3.4=12;\\c =3.5=15.\)
Vậy \(a=6;b=12;c=15\).
Câu1 cho: a/b=b/c=c/d.Chứng minh rằng (a+b+c/b+c+d)2=a/d
Câu2 Tìm A biết rằng: A=a/b+c=c/a+b=b/c+a
Câu3 Tìm x thuộc Z để A thuộc Z và tìm giá trị đó
Câu 1:
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{a+b+c}{b+c+d}\)
=>\(\frac{a}{b}.\frac{b}{c}.\frac{c}{d}=\frac{a+b+c}{b+c+d}.\frac{a+b+c}{b+c+d}.\frac{a+b+c}{b+c+d}\)
=>\(\frac{a}{d}=\left(\frac{a+b+c}{b+c+d}\right)^3\)(đpcm)
Câu 2:
\(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}\)
+)\(a+b+c=0\)
=> \(a=-\left(b+c\right);b=-\left(c+a\right);c=-\left(a+b\right)\)
=>\(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}=\frac{a}{-a}=\frac{b}{-b}=\frac{c}{-c}=-1\)
+)\(a+b+c\ne0\)
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}=\frac{a+b+c}{b+c+c+a+a+b}=\frac{a+b+c}{2\left(a+b+c\right)}=\frac{1}{2}\)
Vậy ......................
Câu 3:
Thiếu đề rồi !?
mình viết đề bài nè ,các bạn giúp mình với nhé!1 câu thôi cũng được. ngày mai mình thi rồi!cảm ơn nhiều lắm nhé
Câu 3:
a) A=x+3/x-2 b) A=1-2x/x+3
Tìm A biết rằng A=a/b+c=b/a+c=c/a+b
tìm a biết rằng a=a/b+c=c/a+b=b/c+a
\(a=\frac{a}{b+c}=\frac{c}{a+b}=\frac{b}{c+a}???\)
a=a/b+c=c/a+b=b/c+a
..................... (chứng minh a = b = c)
=> a = b = c (cái này nếu ko bik chứng minh thì hỏi lại mình ha, còn nếu bik rồi thì thôi! ^^)
=> A = a/ 2a = 1/2
a=1/2
giải thích: vận dụng dãy tỉ số bằng nhau
Tìm A biết rằng A = a / b + c = b /a + c = c / a + b
Tìm A biết rằng A= a/c+b = c/b+a = b/c+a
chứng tỏ rằng biểu thức:
A=a/b+c+b/a+c+c/a+b
không phụ thuộc vào a,b,c
biết a/b+c=b/a+c=c/a+b
a/c+b=c/b+a=b/c+a => a+b+c/c+b+b+a+c+a (ad t/c của dÃY TỈ SỐ = NHAU)
=a+b+c/2(a+b+c)=1/2
VẬY A = 1/2