tìm các cặp giá trị x,y biết 2x+y=1, x,y là stn
Tìm các cặp giá trị x, y để các đa thức sau nhận giá trị bằng 0: 2x + y – 1
Ta có: 2x + y – 1 = 0 ⇔ 2x + y = 1
Có vô số giá trị của x và y để biểu thức trên xảy ra
Các cặp giá trị có dạng (x ∈R, y = 1 – 2x)
Chẳng hạn: (x = 0; y = 1); (x = 1; y = -1)
Trong các cặp STN (x;y) thỏa mãn (2x+1).(y-3)=10 cặp số cho tích x;y lớn nhất là (............)
Bài 1, Tìm giá trị nguyên x biết, E= -5-x/x-2 đạt giá trị nguyên
Bài 2, Tìm x,y thuộc N biết, 25-y^2=8x-2012^2
Bài 3, a) Tìm các số nguyên tố x,y sao cho: 51x+26y=2000
b) Tìm STN x,y biết: 7.(x-2004)^2=23-y^2
c) Tìm x,y nguyên: xy+3x-y=6
d) Tìm mọi số nguyên tố thỏa mãn: x^2+2y^2=1. ai làm nhanh hộ mk tich nha. cần mai luôn rồi. Xin trân trọng cảm ơn!
Bài 1:
Để E nguyên thì \(x+5⋮x-2\)
\(\Leftrightarrow x-2\in\left\{1;-1;7;-7\right\}\)
hay \(x\in\left\{3;1;9;-5\right\}\)
giúp mình với ạ cần luôn nhá. mk sẽ tick cho!
trong các cặp số tự nhiên (x,y) khỏa mãn ( 2x+1 ) ( y-3 ) = 10 . cặp số cho tích x,y lớn nhất là ( .......................) ( nhập giá trị x trước y sau, ngăn cách bởi dấu '':''
Trong các cặp số tự nhiên (x,y) thỏa mãn :
(2x+1).(y - 3 ) = 10 cặp số x,y lớn nhất là (...;...) ( Nhập giá trị x trước y sau ngăn cách bởi dấu ";"
Do 2x+1 là số lẻ nên 2x+1 =1 hoặc 2x+1 =5
a) 2x+1 =1
y-3=10
=> x=1, y=13 => xy =13
b) 2x+1 =5 => x=2
y-3=2 => y=5
Vậy cặp (x;y) cho tích LN là (2;5)
Bài trc lộn chút xíu nhá !
Do 2x+1 là số lẻ nên 2x+1 =1 hoặc 2x+1 =5
a) 2x+1 =1
y-3=10
=> x=1, y=13 => xy =13
b) 2x+1 =5 => x=3
y-3=2 => y=5
Vậy cặp (x;y) cho tích lớn nhất là (3;5)
a, Tìm các cặp số nguyên x ; y biết
( 2x+1) . ( y-1 ) = 4
b, Tính giá trị biểu thức
M = a-b biết a = 2 và m = I1I
1. cho x,y là các số dương thỏa mãn x + y < (h) = 1 .Tìm giá trị nhỏ nhất của biểu thức : A= \(\frac{1}{x^3+3xy^2}\)+\(\frac{1}{y^3+3x^2y}\)
2. a phân tích thành nhân tử (x+y)^2-(x+y)-6
b tìm các cặp giá trị (x;y) nguyên thỏa mãn phương trình sau:
2x^2 -x(2y-1)=y+12
1. Áp dụng bất đẳng thức \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\) với \(a=x^3+3xy^2,b=y^3+3x^2y\) (a;b > 0)
(Bất đẳng thức này a;b > 0 mới dùng được)
\(A\ge\frac{4}{x^3+3xy^2+y^3+3x^2y}=\frac{4}{\left(x+y\right)^3}\ge\frac{4}{1^3}=4\)
Dấu "=" xảy ra khi: \(\hept{\begin{cases}x^3+3xy^2=y^3+3x^2y\\x+y=1\end{cases}\Leftrightarrow\hept{\begin{cases}x^3-3x^2y+3xy^2-y^3=0\\x+y=1\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(x-y\right)^3=0\\x+y=1\end{cases}}\Leftrightarrow x=y=\frac{1}{2}\)
bài 1:
a) Tìm các cẶP số nguyên x; y thỏa mãn hệ thức: ( 2x - 1 ) (y + 4 ) = 11
b) Tìm các giá trị x;y nguyên thỏa mãn: xy = 3y - 5x = 9
11=1x11=11x1=-1x-11=-11x-1
TH1:
2x-1=1 y+4=11
2x=2 y=7
x=1
TH2:
2x-1=11 y+4=1
2x=12 y=-5
x=6
TH3:
2x-1=-1 y+4=-11
2x=-2 y=-15
x=-1
TH4:
2x-1=-11 y+4=-1
2x=-10 y=-5
x=-5
a)(2x-1)(y+4)=11
Ta có:11=1.11=11.1=(-1).(-11)=(-11).(-1)
Do đó ta có bảng sau:
y+4 | -11 | -1 | 1 | 11 |
2x-1 | -1 | -11 | 11 | 1 |
2x | 0 | -10 | 12 | 2 |
x | 0 | -5 | 6 | 1 |
y | -15 | -5 | -3 | 7 |
Vậy các cặp (x;y) TM là:(0;-15)(-5;-5)(6;-3)(1;7)
Tìm các cặp số nguyên (x;y) thoả mãn 2x^2+1/x^2+y^2/4=4 sao cho tích x.y đạt giá trị lớn nhất