Tìm tất cả các số thực x, y để hai số phức z 1 = 9 y 2 - 4 - 10 x i 5 , z 2 = 8 y 2 + 10 i 11 là hai số phức liên hợp của nhau.
A. x = 2 y = ± 2
B. x = ± 2 y = 2
C. x = - 2 y = ± 2
D. x = - 2 y = 2
Tìm tất cả các số thực x,y để hai số phức là hai số phức liên hợp của nhau.
A. .
B. .
C..
D.
1. Tìm tất cả các số tự nhiên \(n\) để phân thức sau tối giản: \(A=\dfrac{2n^2+3n+1}{3n+1}\)
2. Cho các số thực dương x, y, z thỏa mãn \(xy^2z^2+x^2z+y=3z^2\) .Tìm giá trị lớn nhất của biểu thức: \(M=\dfrac{z^4}{1+z^4\left(x^4+y^4\right)}\)
1.
Gọi \(d=ƯC\left(2n^2+3n+1;3n+1\right)\)
\(\Rightarrow2n^2+3n+1-\left(3n+1\right)⋮d\)
\(\Rightarrow2n^2⋮d\Rightarrow2n\left(3n+1\right)-3.2n^2⋮d\)
\(\Rightarrow2n⋮d\Rightarrow2\left(3n+1\right)-3.2n⋮d\Rightarrow2⋮d\Rightarrow\left[{}\begin{matrix}d=1\\d=2\end{matrix}\right.\)
\(d=2\Rightarrow3n+1=2k\Rightarrow n=2m+1\)
\(\Rightarrow n\) lẻ thì A không tối giản
\(\Rightarrow n\) chẵn thì A tối giản
2.
Giả thiết tương đương:
\(xy^2+\dfrac{x^2}{z}+\dfrac{y}{z^2}=3\)
Đặt \(\left(x;y;\dfrac{1}{z}\right)=\left(a;b;c\right)\Rightarrow a^2c+b^2a+c^2b=3\)
Ta có: \(9=\left(a^2c+b^2a+c^2b\right)^2\le\left(a^4+b^4+c^4\right)\left(c^2+a^2+b^2\right)\)
\(\Rightarrow9\le\left(a^4+b^4+c^4\right)\sqrt{3\left(a^4+b^4+c^4\right)}\)
\(\Rightarrow3\left(a^4+b^4+c^4\right)^3\ge81\Rightarrow a^4+b^4+c^4\ge3\)
\(\Rightarrow M=\dfrac{1}{a^4+b^4+c^4}\le\dfrac{1}{3}\)
\(M_{max}=\dfrac{1}{3}\) khi \(\left(a;b;c\right)=\left(1;1;1\right)\) hay \(\left(x;y;z\right)=\left(1;1;1\right)\)
Tìm tất cả các số thực dương x,y,z thỏa mãn :
\(\left(1+\dfrac{x}{y+z}\right)^2+\left(1+\dfrac{y}{x+z}\right)^2+\left(1+\dfrac{z}{x+y}\right)^2=\dfrac{27}{4}\)
Lời giải:
Áp dụng BĐT Bunhiacopxky:
$\text{VT}(1^2+1^2+1^2)\geq (1+\frac{x}{y+z}+1+\frac{y}{x+z}+1+\frac{z}{x+y})^2$
$\Leftrightarrow 3\text{VT}\geq (3+\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y})^2$
$ = \left[3+\frac{x^2}{xy+xz}+\frac{y^2}{yz+yx}+\frac{z^2}{zy+zx}\right]^2$
$\geq \left[3+\frac{(x+y+z)^2}{2(xy+yz+xz)}\right]^2$
$\geq \left[3+\frac{3(xy+yz+xz)}{2(xy+yz+xz)}\right]^2=\frac{81}{4}$
$\Rightarrow \text{VT}\geq \frac{27}{4}$
Dấu "=" xảy ra khi $x=y=z>0$
Áp dụng BĐT Bunhiacopxky:
Dấu "=" xảy ra khi
2. Tìm tất cả các số thực x, y, z thỏa mãn điều kiện 2sqrt(x) + 2sqrt(y - x) + 3sqrt(z - y) = 1/2 * (z + 17)
Câu 1 : Tìm tất cả các giá trị của tham số thực m để hàm số \(y=mx^3-2mx^2+\left(m-2\right)x+1\) không có cực trị
Câu 2: Tìm tất cả các giá trị thực của tham số m để hàm số \(y=\left(m-1\right)x^4-2\left(m-3\right)x^2+1\) không có cực đại
Tìm tất cả các số nguyên x;y;z thỏa mãn
1/x+4/y+9/z=3 và x+y+z<=12
à à.đề đúng rồi.mình nhầm :D
chắc là áp dụng bđt này thôi 1/a+1/b ≥ 4/(a+b)
ta có: 1/x+4/y+9/z ≥ (1+2+3)^2/(x+y+z) => 3≥ 36/(x+y+z) => x+y+z ≥ 12
lại có x+y+z ≤ 12 => x+y+z=12
dấu "=" xảy ra khi và chỉ khi x=2, y=4, z=6
Tìm tất cả các số thực x,y,z thỏa mãn :\(x\sqrt{1-y^2}+y\sqrt{2-z^2}+z\sqrt{3-x^2}=3\)
Sử dụng Bất đẳng thức Bunyakovsky cho 2 bộ 3 số \(\left(\sqrt{1-y^2};\sqrt{2-z^2};\sqrt{3-x^2}\right)\) và \(\left(x,y,z\right)\) ta có
\(\left(x\sqrt{1-y^2}+y\sqrt{2-z^2}+z\sqrt{3-x^2}\right)^2\le\left(x^2+y^2+z^2\right)\cdot\left[6-\left(x^2+y^2+z^2\right)\right]\left(1\right)\)
Đặt \(x^2+y^2+z^2=a\) ta có Bất đẳng thức (1) tương đương
\(9=\left(x\sqrt{1-y^2}+y\sqrt{2-z^2}+z\sqrt{3-x^2}\right)^2\le\left(a\right)\cdot\left(6-a\right)\)
\(=-a^2+6a-9+9=-\left(a-3\right)^2+9\le9\)
Dấu "=" xảy ra khi Giải hệ phương trình trên ta được
Dấu "=" xảy ra khi \(\hept{\begin{cases}a=x^2+y^2+z^2=3\\\frac{x^2}{1-y^2}=\frac{y^2}{2-z^2}=\frac{z^2}{3-x^2}=1\end{cases}}\) giải hệ pt ta có \(\hept{\begin{cases}x=1\\y=0\\z=\sqrt{2}\end{cases}}\)
Thế nào nó bị lỗi nên không hiển thị
\(z=\sqrt{2}\)nữa olm bị sao mà lỗi suất vậy
B1.Tìm x,y,z biết a.-10/15=x/9=-8/9=z/-21 b.x/21=8/y=40/z=4/3 B2.Cho biểu thức A=1/n-1 (Với n thuộc Z) a.Tìm điều kiện của n để A là phân số b.Tìm tất cả các giá trị nguyên của n để A là số nguyên B3.So sánh a.A=15 mũ 16+1/15 mũ 17+1 và B=15 mũ 15+1/15 mũ 16+1
Bài 2:
a: Để A là phân số thì n-1<>0
hay n<>1
b: Để A là số nguyên thì \(n-1\in\left\{1;-1\right\}\)
hay \(n\in\left\{2;0\right\}\)
Tìm tất cả các số thực x,y,z thỏa mãn :\(x\sqrt{1-y^2}+y\sqrt{2-z^2}+z\sqrt{3-x^3}=3\)
đánh sai đề rồi bạn êi, phải là \(x\sqrt{1-y^2}+y\sqrt{2-z^2}+z\sqrt{3-x^2}=3\Leftrightarrow2x\sqrt{1-y^2}\) \(+2y\sqrt{2-z^2}+2z\sqrt{3-x^2}=6\)
<=> \(\left(x-\sqrt{1-y^2}\right)^2+\left(y-\sqrt{2-z^2}\right)^2+\left(z-\sqrt{3-x^2}\right)^2=0\)
<=> ..bla bla tự làm nhá !