Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
kieu dinh hai
Xem chi tiết
Thuỳ trang Lương
Xem chi tiết
Makabe Masamune
12 tháng 8 2020 lúc 22:05

Câu 2

Gọi tổng bình phương hai số lẻ là (2K+1)^2+(2H+1)^2

Ta có: (2K+1)^2+(2H+1)^2=4K^2+4K+1+4H^2+4H+1

                                          =4(K^2+K+H^2+H)+2

Vì 4(K^2+K+H^2+H) chia hết cho 4

=>4(K^2+K+H^2+H)+2 ko chia hết cho 4

Mk biết làm vậy thôi nha

Khách vãng lai đã xóa
nguyễn phương thảo
Xem chi tiết
OoO Pipy OoO
8 tháng 8 2016 lúc 17:32

\(n^4-1=\left(n^2\right)^2-1^2=\left(n^2-1\right)\left(n^2+1\right)=\left(n-1\right)\left(n+1\right)\left(n^2+1\right)\)

n lẻ  

=> n - 1 và n + 1 chẵn

Tích của 2 số chẵn liên tiếp sẽ chia hết cho 8

=> Biểu thức trên chia hết cho 8 với mọi n lẻ (đpcm)

nguyễn phương thảo
8 tháng 8 2016 lúc 22:20

ai giải giúp mình bài 2 và bài 3 với

Cristiano Ronaldo
Xem chi tiết
Nguyễn Tuấn Tài
24 tháng 7 2015 lúc 10:54

Nếu n chia hết cho 3 => n^2 chia hết cho 3 => A không chia hết cho 3

nếu A chia hết cho 3 dư 1 => n-1 chia hết cho A => A chia hết cho 3

Nếu n :3 dư 2 => n+1 chia hết cho 3 => a chia hết cho 3 

                  Vậy A chia hết cho 3 với mọi n

Yuan Bing Yan _ Viên Băn...
24 tháng 7 2015 lúc 8:04

đây ko phải bài lớp 4 đâu

Khang1029
Xem chi tiết
Khang1029
Xem chi tiết
super xity
Xem chi tiết
Khánh Vân
Xem chi tiết
Nguyễn Lê Phước Thịnh
27 tháng 5 2022 lúc 13:10

Bài 2: 

Vì n là số tự nhiên lẻ nên \(n=2k+1\left(k\in N\right)\)

1: 

\(n^2+4n+3\)

\(=n^2+3n+n+3\)

\(=\left(n+3\right)\left(n+1\right)\)

\(=\left(2k+1+3\right)\left(2k+1+1\right)\)

\(=\left(2k+4\right)\left(2k+2\right)\)

\(=4\left(k+1\right)\left(k+2\right)\)

Vì k+1;k+2 là hai số nguyên liên tiếp 

nên \(\left(k+1\right)\left(k+2\right)⋮2\)

=>\(4\left(k+1\right)\left(k+2\right)⋮8\)

hay \(n^2+4n+3⋮8\)

2: \(n^3+3n^2-n-3\)

\(=n^2\left(n+3\right)-\left(n+3\right)\)

\(=\left(n+3\right)\left(n^2-1\right)\)

\(=\left(n+3\right)\left(n-1\right)\left(n+1\right)\)

\(=\left(2k+1+3\right)\left(2k+1-1\right)\left(2k+1+1\right)\)

\(=2k\left(2k+2\right)\left(2k+4\right)\)

\(=8k\left(k+1\right)\left(k+2\right)\)

Vì k;k+1;k+2 là ba số nguyên liên tiếp

nên \(k\left(k+1\right)\left(k+2\right)⋮3!\)

=>\(k\left(k+1\right)\left(k+2\right)⋮6\)

=>\(8k\left(k+1\right)\left(k+2\right)⋮48\)

hay \(n^3+3n^2-n-3⋮48\)

Khang1029
Xem chi tiết
Nguyễn Hoàng Minh
14 tháng 12 2021 lúc 20:50

\(b,n^4-10n^2+9=n^4-n^2-9n^2+9=\left(n^2-1\right)\left(n^2-9\right)\\ =\left(n-1\right)\left(n+1\right)\left(n-3\right)\left(n+3\right)\)

Vì \(n\in Z\) và n lẻ nên \(n=2k+1\left(k\in Z\right)\)

\(\Leftrightarrow\left(n-1\right)\left(n+1\right)\left(n-3\right)\left(n+3\right)\\ =2k.\left(2k+2\right).\left(2k-2\right).\left(2k+4\right)\\ =16k\left(k+1\right)\left(k-1\right)\left(k+2\right)\)

Vì \(k,k+1,k-1,k+2\) là 4 số nguyên liên tiếp nên chia hết cho \(1.2.3.4=24\)

Do đó \(16k\left(k+1\right)\left(k-1\right)\left(k+2\right)⋮24.16=384\)

Nguyễn Hoàng Minh
14 tháng 12 2021 lúc 21:03

\(c,\forall n=1\Leftrightarrow10+18-28=0⋮27\\ \text{G/s }n=k\Leftrightarrow\left(10^k+18k-28\right)⋮27\\ \Leftrightarrow10^k+18k-28=27m\left(m\in N\right)\\ \Leftrightarrow10^k=27m-18k+28\\ \forall n=k+1\Leftrightarrow10^{k+1}+18\left(k+1\right)-28\\ =10.10^k+18k-10\\ =10\left(27m-18k+28\right)+18k-10=270m-162k+270⋮27\)

Theo PP quy nạp ta đc đpcm