giúp mình với
cho x,y € Z .Hãy chứng minh rằng:
a,x-y>0 thì x>y
b,x>y thì x-y >0
Cho x,y ∈ Z. Hãy chứng tỏ rằng:
a)Nếu x-y > 0 thì x > y;
b)Nếu x > y thì x-y > 0.
giúp mk với nha.hôm nay mình cần gấp!!!!!
a.
- Áp dụng quy tắc chuyển vế ta có:
\(x-y>0\)
\(\Leftrightarrow x>0+y\)
\(\Leftrightarrow x>y\) (đpcm)
b.
- Áp dụng quy tắc chuyển vế, ta có:
\(x>y\)
\(\Leftrightarrow x-y>0\) (đpcm)
p/s: theo mình mấy cái này chuyển vế là ra mà cần j cm đâu :v mà thoi làm như n cho dễ
a) Nếu x - y > 0 <=> x - y + y > 0 + y <=> x > y
b) Nếu x > y <=> x - y > y - y <=> x - y > 0
Cho x,y thuộc Z. Hãy chứng tỏ rằng :
a,Nếu x - y > 0 thì x > y
b, Nếu x > y thì X - y > 0
Hãy giúp mình với. Mình cảm ơn các bạn nhiều
Chứng minh rằng:
a) (x+1)2>=4x
b) x2+y2+2>=2(x+y)
c) (1/x+1/y)(x+y)>=4 (với x>0; y>0)
d) x/y+y/x>=2 ( với x>0; y>0)
Giúp mình với ạ <3
a) Giả sử `(x+1)^2 >= 4x` là đúng.
Có: `(x+1)^2 >=4x <=> x^2+2x+1>=4x`
`<=>x^2+1>=2x`
`<=>x^2-2x+1>=0`
`<=> (x-1)^2>=0 forall x`.
Vậy điều giả sử là đúng.
b) `x^2+y^2+2 >=2(x+y)`
`<=> (x^2-2x+1)+(y^2-2y+1) >=0`
`<=>(x-1)^2+(y-1)^2>=0 forall x,y`
c) `(1/x+1/y)(x+y)>=4`
`<=> (x+y)/(xy) (x+y) >=4`
`<=> (x+y)^2 >= 4xy`
`<=> x^2+2xy+y^2>=4xy`
`<=> (x-y)^2>=0 forall x,y > 0`
d) `x/y+y/x>=2`
`<=> (x^2+y^2)/(xy) >=2`
`<=> x^2+y^2 >=2xy`
`<=> (x-y)^2>=0 \forall x,y>0`.
a) Xét hiệu \(\left(x+1\right)^2-4x\) = \(x^2-2x+1=\left(x-1\right)^2\ge0\)
=> \(\left(x+1\right)^2-\text{4x}\) \(\ge\) 0
=> \(\left(x+1\right)^2\ge\text{4x}\) (điều phải chứng minh)
b) xét hiệu \(x^2+y^2+2-2\left(x+y\right)\) = \(\left(x-1\right)^2+\left(y-1\right)^2\ge0\)
=> \(x^2+y^2+2-2\left(x+y\right)\ge0\)
=> \(x^2+y^2+2\ge2\left(x+y\right)\) (điều phải chứng minh)
c) Xét hiệu \(\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\left(x+y\right)-4\) = \((\dfrac{x+y}{xy})\left(x+y\right)-4=\dfrac{\left(x+y\right)^2-4xy}{xy}=\dfrac{\left(x-y\right)^2}{xy}\) \(\ge0\)(vì x>0,y>0)
=>\(\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\left(x+y\right)\ge4\) (điều phải chứng minh)
d) Áp dụng bất đẳng thức Cau-Chy cho các số x>0;y>0 ta có
\(\dfrac{x}{y}+\dfrac{y}{x}\ge2.\left(\dfrac{xy}{yx}\right)=2\)
=> \(\dfrac{x}{y}+\dfrac{y}{x}\ge2\) (điều phải chứng minh)
Mình làm hơi tắt mong bạn thông cảm nhé
Chúc bạn học tốt
Giúp mik bài này vs: chứng minh rằng nếu x/y=y/z=z/t thì (x+y+z/y+z+t)^3=x/t vs y,z,t khác 0; y+z+t khác 0( mik đang cần gấp)
chứng minh rằng nếu x/y=y/z=z/t thì (x+y+x/y+z+t)^3=x/y với y,z,t khác 0 và y+z+t khác 0
Cho x,y thuộc Z . Hãy chứng tỏ rằng :
a.Nếu x-y >0 thì x>y
b.Nếu x>y thì x-y>0
ttheo bai ra thi ; x-y>0 => x-y la so nguyÊn dưong nên x=y+q ( q la so nguyen duong)
=>. x>y
b) theo bai thi x>y suy ra x-y la 1 so nguyen duong nen x-y>0
k cho mik nhoa~
Cho x , y thuộc Z. Hãy chứng tỏ rằng:
a) Nếu x - y > 0 thì x > y
b) Nếu x > y < 0 thì x- y > 0
a) Ta có:
x - y > 0
\(\Rightarrow\)x - y là số nguyên dương nên x = y + q ( q \(\in\)N* )
\(\Rightarrow\)x > y ( đpcm )
b tương tự nha
cho x,y thuộc Z. hãy chứng tỏ rằng :
a, nếu x-y > 0 thì x>y
b, nếu x>y thì x-y>0
a, vì x-y >0 nên x>0+y (chuyển -y từ vế trái sang vế phải) hay x>y
b, tương tự thôi (giống như phần a)
tick nha Ngọc ! (>^_^<)
Chứng minh rằng:
Nếu x/a+2b+c = y/2a+b-c = z/4a-4b+c thì
a/x+2y+z = b/2x+y-z = c/4x-4y+z ( với x, y, z khác 0 và các mẫu đều khác 0 )
Giúp mình nhanh nhé
Đặt x/a+2b+c = y/2a+b-c = z/4a-4b+c = k
=> x = k(a+2b+c) ; y = k(2a+b-c) ; z = (4a-4b+c)k
Sau đấy thay lần lượt vào a/x+2y+z ; b/2x+y-z ; c/4x-4y+z
Đặt x/a+2b+c = y/2a+b-c = z/4a-4b+c = k
=> x = k(a+2b+c) ; y = k(2a+b-c) ; z = (4a-4b+c)k
Sau đấy thay lần lượt vào a/x+2y+z ; b/2x+y-z ; c/4x-4y+z