Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
21 tháng 10 2017 lúc 9:14

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
21 tháng 9 2023 lúc 23:42

A. Ta có: \(\frac{{{u_n}}}{{{u_{n - 1}}}} = \frac{{u_n^2}}{{{u_n}}} = {u_n}\) phụ thuộc vào n nên (\({u_n})\) thay đổi, do đó\(\left( {{u_n}} \right)\) không phải cấp số nhân.

B. Ta có: \(\frac{{{u_{n + 1}}}}{{{{u_n}}}}= 2\), do đó \(\left( {{u_n}} \right)\) là cấp số nhân với công bội \(q = 2\).

C. Ta có: \({u_{n + 1}}- {u_n} = 2\), do đó \(\left( {{u_n}} \right)\) là cấp số cộng với \(d = 2\) .

D. Ta có: \({u_{n + 1}}- {u_n} =  - 2\), do đó \(\left( {{u_n}} \right)\) là cấp số cộng với \(d = -2\).

Vậy ta chọn đáp án B.

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
21 tháng 9 2023 lúc 23:40

Ta có: \({u_n} - {u_{n - 1}} = \left( {3n + 6} \right) - \left[ {3\left( {n - 1} \right) + 6} \right] = 3,\;\forall n \ge 2\)

Vậy dãy số \(\left( {{u_n}} \right)\) là cấp số cộng với công sai \(d = 3\).

Chọn đáp án A.

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
21 tháng 9 2023 lúc 23:36

a) \({u_1} = 5,\;\;{u_2} = 10,\;\;\;{u_3} = 15,\;\;{u_4} = 20,\;\;\;{u_5} = 25\).

Ta có: \(\frac{{{u_n}}}{{{u_{n - 1}}}} = \frac{{5n}}{{5n - 1}} \)phụ thuộc vào n.

Suy ra dãy số \(\left( {{u_n}} \right)\) không phải là cấp số nhân.

b) \({u_1} = 5,\;\;{u_2} = 25,\;\;{u_3} = 125,\;\;\;{u_4} = 625,\;\;\;{u_5} = 3125\).

Ta có: \(\frac{{{u_n}}}{{{u_{n - 1}}}} = \frac{{{5^n}}}{{{5^{n - 1}}}} = 5,\;\forall n \ge 2\).

Do đó dãy số \(\left( {{u_n}} \right)\) là cấp số nhân với công bội \(q = 5\).

Số hạng tổng quát: \({u_n} = 5 \times {5^{n - 1}}= 5^{n}\).

c) \({u_1} = 1,\;\;\;{u_2} = 2,\;\;\;{u_3} = 6,\;\;\;{u_4} = 24,\;\;\;{u_5} = 120\).

 có: \(\frac{{{u_n}}}{{{u_{n - 1}}}} = n\) phụ thuộc vào n, \(\forall n \in {N^*}\).

Suy ra dãy số \(\left( {{u_n}} \right)\) không phải là cấp số nhân.

d) \({u_1} = 1,\;\;{u_2} = 5,\;\;{u_3} = 25,\;\;\;{u_4} = 125,\;\;\;{u_5} = 625\).

Ta có: \(\frac{{{u_n}}}{{{u_{n - 1}}}} = 5,\;\forall n \ge 2\).

Do đó dãy số \(\left( {{u_n}} \right)\) là cấp số nhân với công bội \(q = 5\).

Số hạng tổng quát: \({u_n} = {5^{n - 1}}\).

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
21 tháng 9 2023 lúc 21:33

Đáp án đúng là: D

Dãy số (un) được xác định bởi: u1 = 3 và un = \(\frac{1}{3}\).un-1 với mọi n ≥ 2 là cấp số nhân với số hạng đầu u1 = 3 và q = \(\frac{1}{3}\).

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
22 tháng 3 2019 lúc 6:43

Đáp án C

Cấp số nhân có công thức truy hồi dạng  u 1 = a u n + 1 = q . u n

Dãy số  u 1 = - 1 u n + 1 = 3 u n là CSN với u 1 = - 1  và công sai q = 3.

Buddy
Xem chi tiết
Quoc Tran Anh Le
22 tháng 9 2023 lúc 11:16

a) Ta có: \({u_{n + 1}} = 3{\left( { - 2} \right)^{n + 1}}\)

Xét thương: \(\frac{{{u_{n + 1}}}}{{{u_n}}} = \frac{{3{{\left( { - 2} \right)}^{n + 1}}}}{{3{{\left( { - 2} \right)}^n}}} = \frac{{3{{\left( { - 2} \right)}^n}.\left( { - 2} \right)}}{{3{{\left( { - 2} \right)}^n}}} =  - 2\)

Vậy dãy số là cấp số nhân có công bội \(q =  - 2\).

b) Ta có: \({u_{n + 1}} = {\left( { - 1} \right)^{\left( {n + 1} \right) + 1}}{.7^{n + 1}} = {\left( { - 1} \right)^{n + 2}}{.7^{n + 1}}\)

Xét thương: \(\frac{{{u_{n + 1}}}}{{{u_n}}} = \frac{{{{\left( { - 1} \right)}^{n + 2}}{{.7}^{n + 1}}}}{{{{\left( { - 1} \right)}^{n + 1}}{{.7}^n}}} = \frac{{{{\left( { - 1} \right)}^{n + 1}}.\left( { - 1} \right){{.7}^n}.7}}{{{{\left( { - 1} \right)}^{n + 1}}{{.7}^n}}} =  - 7\)

Vậy dãy số là cấp số nhân có công bội \(q =  - 7\).

c) Ta có: \({u_1} = 1;{u_2} = 2{u_1} + 3 = 2.1 + 3 = 5;{u_3} = 2{u_2} + 3 = 2.5 + 3 = 13\)

Vì \(\frac{{{u_2}}}{{{u_1}}} \ne \frac{{{u_3}}}{{{u_2}}}\) nên dãy số không là cấp số nhân.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
11 tháng 10 2017 lúc 10:22

Các đáp án A, B, C đều là các cấp số nhân công bội lần lượt là 2 ;     3 ;    1 2  

Xét đáp án D:  1 π ;   1 π 2 ;   1 π 4 ;   1 π 6 ;   ⋯ ⇒ u 2 u 1 = 1 π = 1 π 2 = u 3 u 2

Chọn đáp án D.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
10 tháng 4 2018 lúc 3:32