Biết rằng đồ thị hàm số y = 2 x + 1 x và đồ thị hàm số y = x 2 + x + 1 có hai điểm chung, kí hiệu x 1 , y 1 , x 2 , y 2 là tọa độ hai điểm đó. Tìm y 1 + y 2 .
A. .
B. .
C. .
D.
Cho hàm số y = f(x) = \(ax^2\). Biết rằng điểm A(1; 2) thuộc đồ thị của hàm số.
a) Xác định hàm số a.
b) Vẽ đồ thị
a: Thay x=1 và y=2 vào \(y=f\left(x\right)=ax^2\), ta được:
\(a\cdot1^2=2\)
=>a*1=2
=>a=2
=>\(y=2x^2\)
b: bảng giá trị:
x | -2 | -1 | 0 | 1 | 2 |
\(y=2x^2\) | 8 | 2 | 0 | 2 | 8 |
Đồ thị:
biết rằng đồ thị hàm số \(y=x^2-6x\) cắt đồ thị hàm số\(y=-x^2-4\) tại 2 điểm \(A\left(x_A;y_A\right)\) và \(B\left(x_B;y_B\right)\). tính \(y_A+y_B\)
Phương trình hoành độ giao điểm là:
\(x^2-6x=-x^2-4\)
=>\(x^2-6x+x^2+4=0\)
=>\(2x^2-6x+4=0\)
=>\(x^2-3x+2=0\)
=>(x-1)(x-2)=0
=>\(\left[{}\begin{matrix}x-1=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
Khi x=1 thì \(y=-1^2-4=-1-4=-5\)
Khi x=2 thì \(y=-2^2-4=-8\)
Vậy: A(1;-5); B(2;-8)
\(y_A+y_B=\left(-5\right)+\left(-8\right)=-13\)
Cho đồ thị hàm số y = (m -2)x + 8. Tìm m biết rằng đồ thị hàm số cắt trục hoành tại tại điểm có hoành độ là 2?
A. m = -2
B. m = 2
C. m = 1
D. m = -1
Đáp án A
Vì đồ thị hàm số cắt trục hoành tại tại điểm có hoành độ là 2 nên điểm A(2; 0) thuộc đồ thị hàm số đã cho.
Thay x = 2; y = 0 ta được: 0 = (m -2).2 + 8
⇔ 0 = 2m - 4 + 8 ⇔ 0 = 2m + 4 ⇔ m = -2
Biết rằng đồ thị hàm số bậc 4: y = f(x) được cho như hình vẽ sau:
Tìm số giao điểm của đồ thị hàm số y = g(x) = [f’(x)]2 – f(x).f’’(x) và trục Ox
A. 0
B. 2
C. 4
D. 6
Đáp án A
Phương pháp:
Đặt Đáp án A
Phương pháp:
Đặt f(x) = a(x – x1)(x – x2)(x – x3)(x – x4), tính đạo hàm của hàm số y = f(x)
Xét hàm số h x = f ' x f x và chứng minh f(x).f’’(x) – [f’(x)]2 < 0 ∀ x ∉ x 1 ; x 2 ; x 3 ; x 4
Cách giải: Đồ thị hàm sốy = f(x) cắt trục hoành tại bốn điểm phân biệt nên
f(x) = a(x – x1)(x – x2)(x – x3)(x – x4)
=> f ’(x) = a(x – x1)(x – x2)(x – x3)(x – x4) + a(x – x1)(x – x3)(x – x4) + a(x – x1)(x – x2)(x – x4) + a(x – x1)(x – x2)(x – x3)
f ’(x) = f(x) 1 x - x 1 + 1 x - x 2 + 1 x - x 3 + 1 x - x 4 ∀ x ∉ x 1 ; x 2 ; x 3 ; x 4 => f’(x) ≠ 0 ∀ x ∉ x 1 ; x 2 ; x 3 ; x 4
Đặt h x = f ' x f x = 1 x - x 1 + 1 x - x 2 + 1 x - x 3 + 1 x - x 4 ∀ x ∉ x 1 ; x 2 ; x 3 ; x 4
Ta có
= - 1 ( x - x 1 ) 2 + - 1 ( x - x 2 ) 2 + - 1 ( x - x 3 ) 2 + - 1 ( x - x 4 ) 2 <0 ∀ x ∉ x 1 ; x 2 ; x 3 ; x 4
=> f ''(x).f(x) – [f’(x)]2 < 0 ∀ x ∉ x 1 ; x 2 ; x 3 ; x 4
=> g(x) = [f’(x)]2 – f(x).f’’(x)>0 ∀ x ∉ x 1 ; x 2 ; x 3 ; x 4
Khi f(x) = 0 => f '(x) ≠ 0 => g(x) = [f’(x)]2 – f(x).f’’(x) ≠ 0
Vậy đồ thị hàm số y = g(x) = [f’(x)]2 – f(x).f’’(x) không cắt trục Ox
1.Xác định hàm số y = |a|x biết rằng đồ thị hàm số đi qua điểm A(-3;1)
2.Vẽ đồ thị hàm số trên
I. Cho hàm số y = x3 - 2x2 + x - 1 có đồ thị (C). Viết phương trình tiếp tuyến của đồ thị hàm số (C), biết rằng đồ thị này song song với đường thẳng y = -5x + 17.
II. Xét tính liên tục của hàm số sau:
\(\left\{{}\begin{matrix}\dfrac{-x^2+2x+1}{-x-1}|khix=-1\\3-2x|khix=1\end{matrix}\right.\)tại x0 = 1
III. Cho hình chóp S.ABCD có SA \(\perp\) (ABCD), ABCD là hình chữ nhật. Chứng minh rằng BC \(\perp\) (SAC).
Giải giúp mình nhé. Mai mình thi HKII rồi. Cảm ơn các bạn rất nhiều.
Cho hàm số y = a x 3 + b x 2 + c x + d có đạo hàm là hàm số y=f'(x) có đồ thị như hình vẽ bên.
Biết rằng đồ thị hàm số y=f(x) tiếp xúc với trục hoành tại điểm có hoành độ dương. Hỏi đồ thị hàm số y=f(x) cắt trục tung tại điểm có tung độ bằng bao nhiêu?
A. 2 3
B. 1
C. 3 2
D. 4 3
Đáp án D
Ta có: y ' = 3 a x 2 + 2 b x + c
+) Đồ thị hàm số f'(x) đi qua gốc tọa độ => c=0
+) Đồ thị hàm số f'(x) có điểm cực trị:
1 ; − 1 ⇒ 6 a + 2 b = 0 3 a + 2 b = − 1 ⇔ a = 1 3 b = − 1
Vậy hàm số f ' x = x 2 − 2 x . Đồ thị hàm số f(x) tiếp xúc với trục hoành nên có cực trị nằm trên trục hoành. Các giá trị cực trị của hàm số f(x) là:
f 0 = d f 2 = 8 3 − 4 + d = − 4 3 + d
do điểm tiếp xúc có hoành độ dương
=> d = 4 3 => f(x) cắt trục tung tại điểm có tung độ 4 3
Cho hàm số y = ax 3 + bx 2 + cx + d có đạo hàm là hàm số y = f '(x) có đồ thị như hình vẽ bên. Biết rằng đồ thị hàm số y = f(x) tiếp xúc với trục hoành tại điểm có hoành độ dương. Hỏi đồ thị hàm số y = f(x)cắt trục tung tại điểm có tung độ bằng bao nhiêu?
A. 2 3 .
B. 1
C. 3 2 .
D. 4 3 .
a) Biết rằng với x = 4 thì hàm số y = 3x + b có giá trị là 11. Tìm b. Vẽ đồ thị của hàm số với giá trị B vừa tìm được.
b) Biết rằng đồ thị của hàm số y = ax + 5 đi qua điểm A(-1; 3). Tìm a. Vẽ đồ thị hàm số với giá trị a tìm được
a) Thay x = 4 và y = 11 vào y = 3x + b ta được:
11 = 3.4 + b = 12 + b
=> b = 11 – 12 = -1
Ta được hàm số y = 3x – 1
- Cho x = 0 => y = -1 được A(0; -1)
- Cho x = 1 => y = 2 được B(1; 2).
Nối A, B ta được đồ thị hàm số y = 3x – 1.
b) Thay tọa độ điểm A(-1; 3) vào phương trình y = ax + 5 ta có:
3 = a(-1) + 5
=> a = 5 – 3 = 2
Ta được hàm số y = 2x + 5.
- Cho x = -2 => y = 1 được C(-2; 1)
- Cho x = -1 => y = 3 được D(-1; 3)
Nối C, D ta được đồ thị hàm số y = 2x + 5.
Biết rằng đồ thị hàm số y = f(x) có hình dạng như hình vẽ bên. Hỏi đồ thị hàm số y = |f(x)| có bao nhiêu điểm cực trị?
A. 0
B. 1
C. 2
D. 3
Đáp án D.
- Để vẽ đồ thị hàm số y = |f(x)| ta lấy đối xứng phần đồ thị hàm số nằm phía dưới trục hoành lên phía trên.
- Đồ thị hàm số y = |f(x)| có 3 điểm cực trị như hình vẽ: