Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
28 tháng 7 2018 lúc 17:29

a) 10 x 2 x 3 = 20 x 3 = 60

Giá trị của biểu thức 10 x 2 x 3 là 60.

b) 6 x 3 : 2 = 18 : 2 = 9

Giá trị của biểu thức 6 x 3 : 2 là 9.

c) 84 : 2 : 2 = 42 : 2 = 21

Giá trị của biểu thức 84 : 2 : 2 là 21.

d) 160 : 4 x 3 = 40 x 3 = 120

Giá trị của biểu thức 160 : 4 x 3 là 120.

Trần Bình Minh
8 tháng 3 2022 lúc 22:00

10 x 2 x 3 = 60

6 x 3 : 2 = 9

HT tui chỉ kịp làm 2 câu đầu thui nha sorry tui fải đi ngủ đây

Khách vãng lai đã xóa
Nguyễn nhi
Xem chi tiết
Nguyễn Lê Phước Thịnh
25 tháng 10 2023 lúc 19:26

a: Khi x=2 và y=-3 thì \(x^2+2y=2^2+2\cdot\left(-3\right)=4-6=-2\)

b: \(A=x^2+2xy+y^2=\left(x+y\right)^2\)

Khi x=4 và y=6 thì \(A=\left(4+6\right)^2=10^2=100\)

c: \(P=x^2-4xy+4y^2=\left(x-2y\right)^2\)

Khi x=1 và y=1/2 thì \(P=\left(1-2\cdot\dfrac{1}{2}\right)^2=\left(1-1\right)^2=0\)

My Nguyen Tra
Xem chi tiết
Nguyễn Lê Phước Thịnh
29 tháng 12 2021 lúc 21:37

a: \(A=\dfrac{x^2-2x+2x^2+4x-3x^2-4}{\left(x-2\right)\left(x+2\right)}=\dfrac{2x-4}{\left(x-2\right)\left(x+2\right)}=\dfrac{2}{x+2}\)

Nguyễn Hoàng Khải
5 tháng 1 2023 lúc 10:16

a, \(\dfrac{x}{x+2}\) + \(\dfrac{2x}{x-2}\) -\(\dfrac{3x^2-4}{x^2-4}\)

\(\dfrac{x}{x+2}+\dfrac{2x}{x-2}-\dfrac{3x^2+4}{x^2-4}\)

\(\dfrac{x}{x+2}+\dfrac{2x}{x-2}-\dfrac{3x^2+4}{\left(x+2\right)\left(x-2\right)}\)

\(\dfrac{x\left(x-2\right)+2x\left(x+2\right)-3x^2-4}{\left(x+2\right)\left(x-2\right)}\)

\(\dfrac{2x-4}{\left(x+2\right)\left(x-2\right)}=\dfrac{2\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}=\dfrac{2}{x+2}\)

Có vài bước mình làm tắc á nha :>

lý gia huy
Xem chi tiết
Phước Lộc
2 tháng 3 2020 lúc 20:11

Bạn ghi phân số mình chẳng hiểu gì cả

Khách vãng lai đã xóa
lý gia huy
2 tháng 3 2020 lúc 20:24

2x^2+4x/x^3-4x  +  x^2-4/x^2+2x   +  2/2-x

giúp mik với

Khách vãng lai đã xóa
Phước Lộc
2 tháng 3 2020 lúc 20:26

Mình không hiểu phần nào là tử số, phần nào là mẫu số luôn á :v

Khách vãng lai đã xóa
[MINT HANOUE]
Xem chi tiết
Nguyễn Lê Phước Thịnh
4 tháng 12 2021 lúc 22:30

a: \(A=\left(\dfrac{x}{x^2-4}+\dfrac{4}{x-2}+\dfrac{1}{x+2}\right):\dfrac{3x+3}{x^2+2x}\)

\(=\dfrac{x+4x+8+x-2}{\left(x-2\right)\left(x+2\right)}\cdot\dfrac{x\left(x+2\right)}{3\left(x+1\right)}\)

\(=\dfrac{6\left(x+1\right)\cdot x\left(x+2\right)}{3\left(x+1\right)\left(x-2\right)\left(x+2\right)}\)

\(=\dfrac{2x}{x-2}\)

Phươngg Phương
Xem chi tiết
Nguyễn Ngọc Bảo Ngân
30 tháng 12 2020 lúc 20:34

 bbgfhfygfdsdty64562gdfhgvfhgfhhhhh

\hvhhhggybhbghhguyg

Khách vãng lai đã xóa
Minh Dung
Xem chi tiết
Nguyễn Lê Phước Thịnh
27 tháng 1 2022 lúc 11:22

\(=\left(4:2^2\right)\cdot6\cdot6=6^2=36\)

Nguyễn Ngọc Khánh Huyền
27 tháng 1 2022 lúc 11:23

36

Nguyễn hoàng giáp
Xem chi tiết
buidangduong
Xem chi tiết
Hứa Suất Trí
Xem chi tiết
Nguyễn Hữu Triết
21 tháng 12 2018 lúc 14:09

1.a)\(\frac{x^3}{x^2-4}-\frac{x}{x-2}-\frac{2}{x+2}\)

\(=\frac{x^3}{\left(x+2\right)\left(x-2\right)}-\frac{x}{x-2}-\frac{2}{x+2}\)

Để biểu thức được xác định thì:\(\left(x+2\right)\left(x-2\right)\ne0\)\(\Rightarrow x\ne\pm2\)

                                                      \(\left(x+2\right)\ne0\Rightarrow x\ne-2\)

                                                      \(\left(x-2\right)\ne0\Rightarrow x\ne2\)

                         Vậy để biểu thức xác định thì : \(x\ne\pm2\)

b) để C=0 thì ....

❤  Hoa ❤
21 tháng 12 2018 lúc 19:02

1, c , bn Nguyễn Hữu Triết chưa lm xong 

ta có : \(/x-5/=2\)

\(\Rightarrow\orbr{\begin{cases}x-5=2\\x-5=-2\end{cases}}\Rightarrow\orbr{\begin{cases}x=7\\x=3\end{cases}}\)

thay x = 7  vào biểu thứcC

\(\Rightarrow C=\frac{4.7^2\left(2-7\right)}{\left(7-3\right)\left(2+7\right)}=\frac{-988}{36}=\frac{-247}{9}\)KL :>...

thay x = 3 vào C 

\(\Rightarrow C=\frac{4.3^2\left(2-3\right)}{\left(3-3\right)\left(3+7\right)}\)

=> ko tìm đc giá trị C tại x = 3

❤  Hoa ❤
21 tháng 12 2018 lúc 19:21

chết mk nhìn nhầm phần c bài 2 :

\(2,\left(\frac{2+x}{2-x}+\frac{4x^2}{x^2-4}-\frac{2-x}{2+x}\right):\frac{x^2-3x}{2x^2-x^3}\)

Để P xác định 

\(\Rightarrow2-x\ne0\Rightarrow x\ne2\)

\(2+x\ne0\Rightarrow x\ne-2\)

\(x^2-4\ne0\Rightarrow x\ne0\)

\(x^2-3x\ne0\Rightarrow x\ne3\)

b, \(P=\left(\frac{2+x}{2-x}+\frac{4x^2}{\left(2+x\right)\left(2-x\right)}+\frac{2-x}{2+x}\right):\frac{x\left(x-3\right)}{x^2\left(2-x\right)}\)

\(P=\left[\frac{4+4x+x^2}{\left(2-x\right)\left(2+x\right)}-\frac{4x^2}{\left(2+x\right)\left(2-x\right)}-\frac{4-4x+x^2}{\left(2+x\right)\left(2-x\right)}\right].\frac{x\left(2-x\right)}{x-3}\)

\(P=\left[\frac{8x-4x^2}{\left(2-x\right)\left(2+x\right)}\right].\frac{x\left(2-x\right)}{x-3}=\frac{4x\left(2-x\right)}{\left(2-x\right)\left(2+x\right)}.\frac{x\left(2-x\right)}{x-3}\)

\(P=\frac{4x^2\left(2-x\right)}{\left(x-3\right)\left(2+x\right)}\)

d, ĐỂ \(p=\frac{8x^2-4x^3}{x^2-x-6}< 0\)

\(TH1:8x^2-4x^3< 0\)

\(\Rightarrow8x^2< 4x^3\)

\(\Rightarrow2< x\Rightarrow x>2\)

\(TH2:x^2-x-6< 0\Rightarrow x^2< x+6\)