tìm giá trị nhỏ nhất m của hàm số f(x)= \(\frac{4}{x}+\frac{x}{1-x}\) với 1>x>0
tìm giá trị nhỏ nhất m của hàm số f(x)=\(\frac{x^4+3}{x}\) với x>0
f(x) = x3 +3/x = x3 + 1/x +1/x +1/x
cô si 4 số làm mất x là xong
\(f\left(x\right)=\dfrac{4}{x}+\dfrac{x-1+1}{1-x}=\dfrac{4}{x}+\dfrac{1}{1-x}-1\)
\(f\left(x\right)\ge\dfrac{\left(2+1\right)^2}{x+1-x}-1=8\)
\(f\left(x\right)_{min}=8\) khi \(x=\dfrac{2}{3}\)
Tìm giá trị nhỏ nhất của hàm số \(y=\frac{4}{x}+\frac{9}{1-x}\) với 0<x<1.
Cho hàm số f(x) có đạo hàm là hàm f'(x). Đồ thị hàm số f'(x) như hình vẽ bên. Biết rằng f(0) + f(1) - 2f(2) = f(4) - f(3). Tìm giá trị nhỏ nhất m và giá trị lớn nhất M của f(x) trên đoạn [0;4].
A. m = f(4), M = f(2)
B. m = f(1), M = f(2)
C. m = f(4), M = f(1)
D. m = f(0), M = f(2)
Chọn A
Dựa vào đồ thị của hàm f'(x) ta có bảng biến thiên.
Vậy giá trị lớn nhất M = f(2)
Hàm số đồng biến trên khoảng (0;2) nên f(2) > f(1) => f(2) - f(1) > 0 .
Hàm số nghịch biến trên khoảng (2;4) nên f(2) > f(3) => f(2) - f(3) > 0.
Theo giả thuyết: f(0) + f(1) - 2f(2) = f(4) - f(3).
=> f(0) > f(4)
Vậy giá trị nhỏ nhất m = f(4)
tìm giá trị nhỏ nhất m của hàm số f(x)=\(\frac{x^2+32}{4\left(x-2\right)}\)với x>2
tách x2+32 = (x2-4) +32
=) f(x) = (x+2)/4 + 9/(x-2) = [(x-2)/4 +9/(x-2)] + 1
cô si 2 số trong ngoặc vuông làm mất (X-2) là xong
Cho hàm số y = f ( x ) = x - m 2 x + 4 với m là số thực. Tìm giá trị lớn nhất của m để hàm số f(x) có giá trị nhỏ nhất trên [0;1] bằng -1
A. m = 2
B. m = 0
C. m 6
D. m = 3
Tìm giá trị nhỏ nhất m của hàm số \(f\left(x\right)=\frac{x^2+32}{4\left(x-2\right)}.\) với x > 2
Tìm giá trị nhỏ nhất của hàm số y:\(\frac{2}{1-x}+x\)với 0<x<1
Tìm giá trị lớn nhất của hàm số f(x)=\(\frac{x}{x^2+2014x+1}\)(Với x>0)
Ta có f(x) đạt giá trị lớn nhất khi \(\frac{1}{f\left(x\right)}\) đạt giá trị nhỏ nhất.
Xét \(\frac{1}{f\left(x\right)}=\frac{x^2+2014x+1}{x}=x+\frac{1}{x}+2014\ge2\sqrt{x.\frac{1}{x}}+2014=2016\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}x>0\\x=\frac{1}{x}\end{cases}}\Leftrightarrow x=1\)
\(Min\)\(\frac{1}{f\left(x\right)}=2016\Leftrightarrow x=1\)
Vậy \(Max\)\(f\left(x\right)=\frac{1}{2016}\Leftrightarrow x=1\)
Tìm giá trị nhỏ nhất của hàm số f(x)=x+\(\frac{1}{x}\) với x\(\ge\)2